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Some recapitulation

Let E be a rational elliptic curve of conductor N, and let K = Q(v/—D)
be an imaginary quadratic field satisfying the Heegner hypothesis

N == £ is split in K.
For any n coprime to N, define a Heegner point of conductor n
P, :=®n(C/O,,C/N,) € E(H,).
For any ¢ coprime to nN that is inert in K, there are norm compatibilities
TrZ:e P = aiP,.

These form a Heegner system for (E, K).

Furthermore, define the basic Heegner point

Pk := Trll(P1) € E(K).
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Application to BSD
We will do the following next week:

Theorem (Gross—Zagier '86)
There is an explicit constant « # 0 such that L'(E/K,1) =« - Z(PK).

We will do the following this week:

Theorem (Kolyvagin '90)

If h(Pk) # 0, then rkzE(K) = 1 and #11I(E/K) < oo.
In particular, E(K) jtors = Z - %PK.

This almost proves the following:

Corollary (of Gross—Zagier '86, Kolyvagin '90, etc)
If ords=1 L(E,s) <1, then rkz E(Q) = ords=1L(E,s) and #III(E) < cc.

The missing ingredient is the existence of K.
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Existence of Heegner fields

Let —e be the sign in the functional equation

ANE,s)=—e-NE,2—>5).

Theorem (Waldspurger '85, Murty—Murty '97)

If e = +, there are many imaginary quadratic fields K = Q(v/—D)
satisfying the Heegner hypothesis such that ords—1 L(Ep,s) = 0.

In particular,
ords—1L(E,s) = ords—1 L(E/K,s).

Theorem (Bump—Friedberg—Hoffstein '90, Murty—Murty '91)

If e = —, there are many imaginary quadratic fields K = Q(v/—D)
satisfying the Heegner hypothesis such that ords—1 L(Ep,s) = 1.

In particular,
ords—1 L(E,s) = ords—1 L(E/K,s) — 1.
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Complex conjugation on Heegner points

Lemma (7)
Complex conjugation T maps P, € E(H,) tors to

T(Py) = € o(Py),
for some o € Gal(H,/K).
Proof.

Note that € is precisely the eigenvalue of the Fricke involution wy on the
eigenform fg associated to E. On the other hand,

WN((C/Om(C/Nn) = (C/N;l,(C//\Tn),

which differs from 7(C/0O,,C/N,) by some o € Gal(H,/K) = C1(O,).
Now apply ¢y and the Manin—Drinfeld theorem. O

In particular, Pk € E(Q) /tors precisely if € = +.
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Proof of Gross—Zagier—Kolyvagin

Proof of BSD for ords_; L(E,s) < 1.

The functional equation says that L(E,1) = —e- L(E,1) and
L'(E,1) =€ L'(E,1). Since ords—1 L(E,s) <1,

]_ =
ords_1L(E,s) = {0 =+,
€ = —

Choose any imaginary quadratic field K satisfying the Heegner hypothesis
such that ords—1 L(E/K,s) = 1, which exists by W/MM and BFH/MM.
By Gross—Zagier and Kolyvagin, E(K) iors = Z - 2 Px. By Lemma (1),

1 e=+

I'sz((@) = {O = _ .

Finally, #II(E) < oo follows from #III(E/K) < oo by Kolyvagin. O
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A weaker version of Kolyvagin

Theorem (Kolyvagin '90)
IFh(Pk) # 0, then rkz E(K) = 1 and #111(E/K) < .
For any prime /,

0 — E(K)/LE(K) 2 Sely(E/K) — LI(E/K)[¢] — 0.
Choose any prime £ 1 6D such that pg is surjective and Pk ¢ (E(K).
Then E(K)[¢] =0, so rkz E(K) = dimyp, E(K)/(E(K).

Theorem (weak Kolyvagin '90)
Selo(E/K) = Fy - 5(Pk), so tkz E(K) < 1 and #I1I(E/K)[{] < oo.

When E has no complex multiplication, this excludes finitely many primes
by Serre's theorem, so this proves that h(Pk) # 0 implies rkz E(K) = 1.
Kolyvagin proves #III(E/K) < oo by refining the argument for these
primes and bounding the ¢-primary components using lwasawa theory.
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Selmer structures

Let M be a discrete finite irreducible self-dual F;[Gk]-module.

The inflation-restriction exact sequence says
0 — HY(Gy", M) — HY(K,, M) = H'(l,, M) — 0.
For M = E[{] and good p 1 ¢, this can be identified with
0 — E(K,)/lE(K,) — HY(K,, E[{]) — H*(K,, E)[¢] — O.
More generally, a Selmer structure for (K, M) is an assignment
p— HE(Ky, M) C H(Ky, M),

such that H}(Kp, M) = H*(Gp, M") for all but finitely many places p of
K. lts associated singular quotient H}(K,, M) sits in

0 — HX(Ky, M) — HY(Ky, M) L5 HY(K,, M) — 0.
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Selmer groups
The Selmer group Sel := Sel(K, M) sits in

0 — Sel(K, M)—>H1KM HH1

For M = E[] and H}(K,, M) = E(K,)/CE(K},), this is just Sel,(E/K).

Let S be a finite set of places of K.
> The relaxed Selmer group Sel® := Sel® (K, M) sits in

0 — Sel(K, M) — Sel®(K, M) Boeslh, =2 P HAUK
peS

» The restricted Selmer group Sels := Sels(K, M) sits in

0 — Sels(K, M) — Sel(K, M) Brest, == P HAK
peS
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Duality of Selmer groups
Corollary (of Tate duality)

0 — Sel — Sel® — P HX(K,, M)
peS
I

P Hi (Kp, M)¥ — Sel¥ — Sel¢ — 0.
peS

Proof.

Local Tate duality gives a perfect pairing HX(K,, M) x HY(K,, M) — F,.

The Poitou-Tate exact sequence gives exactness at

Sel® — @D H"(Kp, M) — Sel®.
peS

Now apply the snake lemma and diagram chase. O
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Complex conjugation on Selmer groups

To compute Sel, it suffices to consider the last three terms

0 — coker | Sel® = @ Hi(Kp, M) | — Sel” — Sel¢ — 0,
peS

for some appropriate finite set of places S of K.

If 7 € Gg is an involution with non-zero eigenspaces M™ and M—, then

0 — coker [ Sel>t — @ Hsl(Kp, Mm* | - Sel™Y — Sel}’lv — 0,
pPES:

0 — coker [ Sel>™ — @5 HX(Kp, M)~ | = Sel™" — Selg,” — 0,

pPES:

for some appropriate finite sets of places S; and S, of K.
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Computing Selmer groups
Now consider M = E[{].

Corollary (of Chebotarev density)
There is a finite set S of primes of Q inert in K such that

coker SelS C = @ HY(K,, E)[{]~ > — Sel " — Selg Y.
\—,_/ ——
@pcsFiclr PSS, <(p) 0

s
P

For any p € S, there is a finite set S, of primes of Q inert in K such that

coker Sel>  — @5 H'(Kp, E)I° ) — Sel® — SelgY — 0.
S—~— _,_/ ——
@‘VGSP Fe-c(pa); 9€5p Fe-c(pa)g F¢-8(Pk)

Proof.
Chebotarev density and a lot of Galois cohomology. O
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Derivative operators
The classes c(n) € HY(K, E[¢]) are derived from P, € E(H,).

It suffices to let n be a product of primes p { ND{ inert in K, so

Gal(H,/Hy) = [] Gal(Hp/Hy) = [[ 2/ (p+ 1)Z - 0.

pln pln

Define the derivative operator D, € Z[Gal(H,/H:)] by

D, = HDP,
pln

where D, is any solution to (o, —1)D, = p+1— Ter, and define

Poi= Y _ 7(DaPy),

TeT,

where T, is a set of coset representatives for Gal(H,/H:) in Gal(H,/K).

13/16



Derived classes

Lemma
The class of P, in E(H,)/¢E(H,) is invariant under the action of
G, := Gal(H,/K) and lies in the ¢, := ¢ - (—1)7°(") eigenspace.

Proof.

Norm compatibilities and Lemma (7). O

Define the derived class c(n) € HY(K, E[{])¢ by res,(c(n)) = §,(Py,) in

HY (G, E(Ha)[(])™ =0

\Linfn
HH (K, E[) —2— HY(K, E[f])* ——— HX(K, E[])*
! Lres, !
H} (Hn, E[) 6" —— HY(H,, E[(]) %" —— HX(H,, E[(])%
" l(tra,,

H?(Gp, E(Hp)(]) =0
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Ramification of derived classes

Lemma
L. Ifp{n, then c(n); =0, so c(n) € Sellpinten,
2. If p| n, then C(n) = 0 if and only lfP,,/p € lE(K,).

Proof of 1 for good p 1 /.
Note that HX(1,, E[¢]) = Hom(/,, E[¢])%". Since (H,),/K is unramified
at p, the inertia subgroups of K, and (H,), are both /,, so

HY(Kp, E[]) —— HY(Kp, E[A]) — 2 Hom(l,, E[])
1 Jres, [
HE(Ha)ps E1) —5— H((Ha)ps E[]) —5> Hom(lp, E[1)

Thus ¢(n)?

5 = (resn(c(n)p))® = 0 by exactness. O

Note that 2 is precisely the reason for the assumption Py ¢ (E(K).
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