Mini Project

Kolyvagin's work on the BSD conjecture ${ }^{1}$

David Ang

Thursday, 5 May 2022
${ }^{1}$ Victor Kolyvagin, 1989. Euler Systems, in Grothendieck Festschrift

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition:

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition:

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition:

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition:

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)$

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition:

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)\left(K^{1}\right)$ by CM theory.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition:

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)\left(K^{1}\right)$ by CM theory.
- A Heegner point $P_{1}:=\phi\left(x_{1}\right) \in E\left(K^{1}\right)$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition:

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)\left(K^{1}\right)$ by CM theory.
- A Heegner point $P_{1}:=\phi\left(x_{1}\right) \in E\left(K^{1}\right)$.
- A basic Heegner point

$$
P_{K}:=\sum_{\sigma \in \operatorname{Gal}\left(K^{1} / K\right)} \sigma\left(P_{1}\right) \in E(K) .
$$

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

$$
L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)
$$

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

$$
L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)
$$

If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

$$
L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)
$$

If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

$$
L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)
$$

If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K)=1$.

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

$$
L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)
$$

If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K)=1$.
This almost proves weak BSD for analytic rank ≤ 1 !

From Gross-Zagier to Kolyvagin

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

Idea: bound $\mathrm{rk}_{\mathbb{Z}} E(K)$ with

$$
\delta: E(K) / \ell E(K) \hookrightarrow \operatorname{Sel}(K, E[\ell])
$$

for some prime $\ell \in \mathbb{N}$.

From Gross-Zagier to Kolyvagin

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

Idea: bound $\mathrm{rk}_{\mathbb{Z}} E(K)$ with

$$
\delta: E(K) / \ell E(K) \hookrightarrow \operatorname{Sel}(K, E[\ell])
$$

for some prime $\ell \in \mathbb{N}$.

- Want $\operatorname{dim}_{\mathbb{F}_{\ell}} E(K) / \ell E(K)=\mathrm{rk}_{\mathbb{Z}} E(K)$.

From Gross-Zagier to Kolyvagin

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

Idea: bound $\mathrm{rk}_{\mathbb{Z}} E(K)$ with

$$
\delta: E(K) / \ell E(K) \hookrightarrow \operatorname{Sel}(K, E[\ell])
$$

for some prime $\ell \in \mathbb{N}$.

- Want $\operatorname{dim}_{\mathbb{F}_{\ell}} E(K) / \ell E(K)=\mathrm{rk}_{\mathbb{Z}} E(K)$. Suffices to assume

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

From Gross-Zagier to Kolyvagin

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

Idea: bound $\mathrm{rk}_{\mathbb{Z}} E(K)$ with

$$
\delta: E(K) / \ell E(K) \hookrightarrow \operatorname{Sel}(K, E[\ell])
$$

for some prime $\ell \in \mathbb{N}$.

- Want $\operatorname{dim}_{\mathbb{F}_{\ell}} E(K) / \ell E(K)=\mathrm{rk}_{\mathbb{Z}} E(K)$. Suffices to assume

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

Fact: this implies $E(K)[\ell]=0$.

From Gross-Zagier to Kolyvagin

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

Idea: bound $\mathrm{rk}_{\mathbb{Z}} E(K)$ with

$$
\delta: E(K) / \ell E(K) \hookrightarrow \operatorname{Sel}(K, E[\ell])
$$

for some prime $\ell \in \mathbb{N}$.

- Want $\operatorname{dim}_{\mathbb{F}_{\ell}} E(K) / \ell E(K)=\mathrm{rk}_{\mathbb{Z}} E(K)$. Suffices to assume

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)
$$

Fact: this implies $E(K)[\ell]=0$.

- Need

$$
P_{K} \notin \ell E(K) .
$$

From Gross-Zagier to Kolyvagin

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

Theorem (main result ${ }^{2}$)
Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then

$$
\operatorname{Sel}(K, E[\ell])=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)
$$

${ }^{2}$ Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves

From Gross-Zagier to Kolyvagin

Theorem (Kolyvagin, 1989)

$$
\widehat{h}\left(P_{K}\right) \neq 0 \quad \Longrightarrow \quad E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}
$$

Theorem (main result ${ }^{2}$)
Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then

$$
\operatorname{Sel}(K, E[\ell])=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)
$$

Remark
There are infinitely many such $\ell \in \mathbb{N}$.

[^0]
Generalised Selmer groups

For each $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E[\ell] \rightarrow E \xrightarrow{\bullet \ell} E \rightarrow 0 .
$$

Generalised Selmer groups

For each $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E[\ell] \rightarrow E \xrightarrow{\cdot \ell} E \rightarrow 0 .
$$

Applying $\operatorname{Gal}(\bar{K} / K)$ cohomology,

Generalised Selmer groups

For each $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E[\ell] \rightarrow E \xrightarrow{\bullet \ell} E \rightarrow 0 .
$$

Applying $\operatorname{Gal}(\bar{K} / K)$ cohomology,

Truncating at $H^{1}(K, E[\ell])$,

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} H^{1}(K, E[\ell]) \rightarrow H^{1}(K, E)[\ell] \rightarrow 0
$$

Generalised Selmer groups

For each $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E[\ell] \rightarrow E \xrightarrow{\cdot \ell} E \rightarrow 0
$$

Applying $\operatorname{Gal}(\bar{K} / K)$ cohomology,

Truncating at $H^{1}(K, E[\ell])$, and for each place v of K,

$$
\begin{aligned}
& 0 \longrightarrow E(K) / \ell E(K) \stackrel{\delta}{\longrightarrow} H^{1}(K, E[\ell]) \longrightarrow H^{1}(K, E)[\ell] \longrightarrow 0 \\
& 0 \longrightarrow E\left(K_{v}\right) / \ell E\left(K_{v}\right) \longrightarrow H^{1}\left(K_{v}, E[\ell]\right) \longrightarrow H^{1}\left(K_{v}, E\right)[\ell] \longrightarrow 0
\end{aligned}
$$

Generalised Selmer groups

For each $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E[\ell] \rightarrow E \xrightarrow{\cdot \ell} E \rightarrow 0
$$

Applying $\operatorname{Gal}(\bar{K} / K)$ cohomology,

Truncating at $H^{1}(K, E[\ell])$, and for each place v of K,

Generalised Selmer groups

There is an exact diagram

$$
\begin{aligned}
& 0 \longrightarrow E(K) / \ell E(K) \xrightarrow{\delta} H^{1}(K, E[\ell]) \longrightarrow H^{1}(K, E)[\ell] \longrightarrow 0 \\
& \downarrow \downarrow H^{1} \downarrow \\
& 0 \rightarrow E\left(K_{v}\right) / \ell E\left(K_{v}\right) \rightarrow H^{1}\left(K_{v}, E[\ell]\right) \rightarrow H^{1}\left(K_{v}, E\right)[\ell] \rightarrow 0
\end{aligned}
$$

Generalised Selmer groups

There is an exact diagram

$$
\begin{gathered}
0 \longrightarrow E(K) / \ell E(K) \xrightarrow{\delta} \xrightarrow{\downarrow} H^{1}(K, E[\ell]) \underset{\downarrow}{\downarrow} \cdots H^{1}(K, E)[\ell] \longrightarrow 0 \\
0 \rightarrow E\left(K_{v}\right) / \ell E\left(K_{v}\right) \longrightarrow H^{1}\left(K_{v}, E[\ell]\right) \rightarrow H^{1}\left(K_{v}, E\right)[\ell] \rightarrow 0
\end{gathered} .
$$

- The classical Selmer group is

$$
\operatorname{Sel}(K, E[\ell]):=\left\{c \in H^{1}(K, E[\ell]) \mid \forall v, c^{v}=0\right\} .
$$

Generalised Selmer groups

There is an exact diagram

- The classical Selmer group is

$$
\operatorname{Sel}(K, E[\ell]):=\left\{c \in H^{1}(K, E[\ell]) \mid \forall v, c^{v}=0\right\} .
$$

- The relaxed Selmer group is

$$
\operatorname{Sel}^{S}(K, E[\ell]):=\left\{c \in H^{1}(K, E[\ell]) \mid \forall v \notin S, c^{v}=0\right\} .
$$

Generalised Selmer groups

There is an exact diagram

$$
\begin{gathered}
0 \longrightarrow E(K) / \ell E(K) \xrightarrow{\delta} H^{1}(K, E[\ell]) \underset{(\cdot) \downarrow \downarrow}{\downarrow} H^{1}(K, E)[\ell] \longrightarrow 0 \\
0 \rightarrow E\left(K_{v}\right) / \ell E\left(K_{v}\right) \longrightarrow H^{1}\left(K_{v}, E[\ell]\right) \longrightarrow H^{1}\left(K_{v}, E\right)[\ell] \rightarrow 0
\end{gathered} .
$$

- The classical Selmer group is

$$
\operatorname{Sel}(K, E[\ell]):=\left\{c \in H^{1}(K, E[\ell]) \mid \forall v, c^{v}=0\right\} .
$$

- The relaxed Selmer group is

$$
\operatorname{Sel}^{S}(K, E[\ell]):=\left\{c \in H^{1}(K, E[\ell]) \mid \forall v \notin S, c^{v}=0\right\} .
$$

- The restricted Selmer group is

$$
\operatorname{Sel}_{S}(K, E[\ell]):=\left\{c \in \operatorname{Sel}^{S}(K, E[\ell]) \mid \forall v \in S, c_{v}=0\right\}
$$

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Proof.
Local Tate duality and the Poitou-Tate exact sequence.

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Proof.
Local Tate duality and the Poitou-Tate exact sequence.
Proposition
There is a "magical" set S of primes, inert in K / \mathbb{Q}, such that

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Proof.
Local Tate duality and the Poitou-Tate exact sequence.
Proposition
There is a "magical" set S of primes, inert in K / \mathbb{Q}, such that

- $H^{1}\left(K_{p}, E\right)[\ell]=\mathbb{F}_{\ell} \cdot c(p)^{p}$ for all $p \in S$,

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Proof.
Local Tate duality and the Poitou-Tate exact sequence.
Proposition
There is a "magical" set S of primes, inert in K / \mathbb{Q}, such that

- $H^{1}\left(K_{p}, E\right)[\ell]=\mathbb{F}_{\ell} \cdot c(p)^{p}$ for all $p \in S$,
$-\operatorname{im}\left(\sigma_{S}\right)=\prod_{p \in S} \mathbb{F}_{\ell} \cdot c(p)^{p}$, and

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Proof.
Local Tate duality and the Poitou-Tate exact sequence.
Proposition
There is a "magical" set S of primes, inert in K / \mathbb{Q}, such that

- $H^{1}\left(K_{p}, E\right)[\ell]=\mathbb{F}_{\ell} \cdot c(p)^{p}$ for all $p \in S$,
$-\operatorname{im}\left(\sigma_{S}\right)=\prod_{p \in S} \mathbb{F}_{\ell} \cdot c(p)^{p}$, and
- $\operatorname{Sel}_{S}=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)$.

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Proof.
Local Tate duality and the Poitou-Tate exact sequence.

Proposition

There is a "magical" set S of primes, inert in K / \mathbb{Q}, such that

- $H^{1}\left(K_{p}, E\right)[\ell]=\mathbb{F}_{\ell} \cdot c(p)^{p}$ for all $p \in S$,
$-\operatorname{im}\left(\sigma_{S}\right)=\prod_{p \in S} \mathbb{F}_{\ell} \cdot c(p)^{p}$, and
- $\operatorname{Sel}_{S}=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)$.

Proof.

Chebotarev density and a lot of Galois cohomology.

Generalised Selmer groups

Proposition

There is an exact sequence of \mathbb{F}_{ℓ}-vector spaces

$$
0 \rightarrow \mathrm{Sel} \rightarrow \mathrm{Sel}^{S} \xrightarrow{\sigma_{S}} \prod_{v \in S} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow \operatorname{Sel}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
$$

Proof.
Local Tate duality and the Poitou-Tate exact sequence.
Proposition (sort of)
There is a "magical" set S of primes, inert in K / \mathbb{Q}, such that

- $H^{1}\left(K_{p}, E\right)[\ell]=\mathbb{F}_{\ell} \cdot c(p)^{p}$ for all $p \in S$,
$-\operatorname{im}\left(\sigma_{S}\right)=\prod_{p \in S} \mathbb{F}_{\ell} \cdot c(p)^{p}$, and
- $\operatorname{Sel}_{S}=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)$.

Proof.
Chebotarev density and a lot of Galois cohomology.

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	
ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$	
N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$	
Hilbert class field K^{1}	
point $x_{1} \in X_{0}(N)\left(K^{1}\right)$	
Heegner point $P_{1} \in E\left(K^{1}\right)$	

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	order $\mathcal{O}_{K, n}:=\mathbb{Z}+n \mathcal{O}_{K}$
ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$	
N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$	
Hilbert class field K^{1}	
point $x_{1} \in X_{0}(N)\left(K^{1}\right)$	
Heegner point $P_{1} \in E\left(K^{1}\right)$	

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	order $\mathcal{O}_{K, n}:=\mathbb{Z}+n \mathcal{O}_{K}$
ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$	ideal $\mathcal{N}_{K, n}:=\mathcal{N}_{K} \cap \mathcal{O}_{K, n} \unlhd \mathcal{O}_{K, n}$
N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$	
Hilbert class field K^{1}	
point $x_{1} \in X_{0}(N)\left(K^{1}\right)$	
Heegner point $P_{1} \in E\left(K^{1}\right)$	

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	order $\mathcal{O}_{K, n}:=\mathbb{Z}+n \mathcal{O}_{K}$
ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$	ideal $\mathcal{N}_{K, n}:=\mathcal{N}_{K} \cap \mathcal{O}_{K, n} \unlhd \mathcal{O}_{K, n}$
N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$	N-isogeny $\mathbb{C} / \mathcal{O}_{K, n} \rightarrow \mathbb{C} / \mathcal{N}_{K, n}^{-1}$
Hilbert class field K^{1}	
point $x_{1} \in X_{0}(N)\left(K^{1}\right)$	
Heegner point $P_{1} \in E\left(K^{1}\right)$	

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	order $\mathcal{O}_{K, n}:=\mathbb{Z}+n \mathcal{O}_{K}$
ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$	ideal $\mathcal{N}_{K, n}:=\mathcal{N}_{K} \cap \mathcal{O}_{K, n} \unlhd \mathcal{O}_{K, n}$
N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$	N-isogeny $\mathbb{C} / \mathcal{O}_{K, n} \rightarrow \mathbb{C} / \mathcal{N}_{K, n}^{-1}$
Hilbert class field K^{1}	ring class field K^{n}
point $x_{1} \in X_{0}(N)\left(K^{1}\right)$	
Heegner point $P_{1} \in E\left(K^{1}\right)$	

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	order $\mathcal{O}_{K, n}:=\mathbb{Z}+n \mathcal{O}_{K}$
ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$	ideal $\mathcal{N}_{K, n}:=\mathcal{N}_{K} \cap \mathcal{O}_{K, n} \unlhd \mathcal{O}_{K, n}$
N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$	N-isogeny $\mathbb{C} / \mathcal{O}_{K, n} \rightarrow \mathbb{C} / \mathcal{N}_{K, n}^{-1}$
Hilbert class field K^{1}	ring class field K^{n}
point $x_{1} \in X_{0}(N)\left(K^{1}\right)$	point $x_{n} \in X_{0}(N)\left(K^{n}\right)$
Heegner point $P_{1} \in E\left(K^{1}\right)$	

Derived Heegner points

For any $n \in \mathbb{N}$, there is a cohomology class $c(n) \in H^{1}(K, E[\ell])$ derived from a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	order $\mathcal{O}_{K, n}:=\mathbb{Z}+n \mathcal{O}_{K}$
ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$	ideal $\mathcal{N}_{K, n}:=\mathcal{N}_{K} \cap \mathcal{O}_{K, n} \unlhd \mathcal{O}_{K, n}$
N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$	N-isogeny $\mathbb{C} / \mathcal{O}_{K, n} \rightarrow \mathbb{C} / \mathcal{N}_{K, n}^{-1}$
Hilbert class field K^{1}	ring class field K^{n}
point $x_{1} \in X_{0}(N)\left(K^{1}\right)$	point $x_{n} \in X_{0}(N)\left(K^{n}\right)$
Heegner point $P_{1} \in E\left(K^{1}\right)$	Heegner point $P_{n} \in E\left(K^{n}\right)$

Derived Heegner points

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "nice" relations over all $n \in \mathbb{N}$.

Derived Heegner points

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "nice" relations over all $n \in \mathbb{N}$.
Fact: If p is inert in K / \mathbb{Q}, then

$$
\operatorname{Gal}\left(K^{p} / K^{1}\right)=\left\{1, \sigma_{p}, \sigma_{p}^{2}, \ldots, \sigma_{p}^{p}\right\} .
$$

Derived Heegner points

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "nice" relations over all $n \in \mathbb{N}$.
Fact: If p is inert in K / \mathbb{Q}, then

$$
\operatorname{Gal}\left(K^{p} / K^{1}\right)=\left\{1, \sigma_{p}, \sigma_{p}^{2}, \ldots, \sigma_{p}^{p}\right\}
$$

Proposition
Let $p \in S$. Then

$$
\sum_{i=0}^{p} \sigma_{p}^{i} P_{p q}=a_{p} P_{q} \in E\left(K^{q}\right), \quad \overline{P_{p q}}=\overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K^{q} / K}\right) P_{q}} \in \bar{E}\left(\mathbb{F}_{\mathfrak{p}_{\mathfrak{q}}}\right) .
$$

Derived Heegner points

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "nice" relations over all $n \in \mathbb{N}$.
Fact: If p is inert in K / \mathbb{Q}, then

$$
\operatorname{Gal}\left(K^{p} / K^{1}\right)=\left\{1, \sigma_{p}, \sigma_{p}^{2}, \ldots, \sigma_{p}^{p}\right\} .
$$

Proposition (don't worry about this)
Let $p \in S$. Then

$$
\sum_{i=0}^{p} \sigma_{p}^{i} P_{p q}=a_{p} P_{q} \in E\left(K^{q}\right), \quad \overline{P_{p q}}=\overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K^{q} / K}\right) P_{q}} \in \bar{E}\left(\mathbb{F}_{\mathfrak{p}_{\mathfrak{q}}}\right) .
$$

Proof.
Consequence of the Eichler-Shimura congruence relation.

Derived Heegner points

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "nice" relations over all $n \in \mathbb{N}$.
Fact: If p is inert in K / \mathbb{Q}, then

$$
\operatorname{Gal}\left(K^{p} / K^{1}\right)=\left\{1, \sigma_{p}, \sigma_{p}^{2}, \ldots, \sigma_{p}^{p}\right\} .
$$

Proposition (don't worry about this)
Let $p \in S$. Then

$$
\sum_{i=0}^{p} \sigma_{p}^{i} P_{p q}=a_{p} P_{q} \in E\left(K^{q}\right), \quad \overline{P_{p q}}=\overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K^{q} / K}\right) P_{q}} \in \bar{E}\left(\mathbb{F}_{\mathfrak{p}_{q}}\right) .
$$

Proof.
Consequence of the Eichler-Shimura congruence relation.

These are the axioms of an AX3 Euler system.

Derived Heegner points

Given $P_{p} \in E\left(K^{p}\right)$, how to derive $c(p) \in H^{1}(K, E[\ell])$?

Derived Heegner points

Given $P_{p} \in E\left(K^{p}\right)$, how to derive $c(p) \in H^{1}(K, E[\ell])$?
Define the Kolyvagin derivative operator by

$$
D_{p}:=\sigma_{p}+2 \sigma_{p}^{2}+\cdots+p \sigma_{p}^{p} \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{p} / K^{1}\right)\right] .
$$

Derived Heegner points

Given $P_{p} \in E\left(K^{p}\right)$, how to derive $c(p) \in H^{1}(K, E[\ell])$?
Define the Kolyvagin derivative operator by

$$
D_{p}:=\sigma_{p}+2 \sigma_{p}^{2}+\cdots+p \sigma_{p}^{p} \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{p} / K^{1}\right)\right] .
$$

Also define a "trace" operator by

$$
T_{p}:=\sum_{\tau \in T} \tau \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{p} / K\right)\right],
$$

where T is a set of coset representatives for $\operatorname{Gal}\left(K^{p} / K^{1}\right) \leq \operatorname{Gal}\left(K^{p} / K\right)$.

Derived Heegner points

Given $P_{p} \in E\left(K^{p}\right)$, how to derive $c(p) \in H^{1}(K, E[\ell])$?
Define the Kolyvagin derivative operator by

$$
D_{p}:=\sigma_{p}+2 \sigma_{p}^{2}+\cdots+p \sigma_{p}^{p} \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{p} / K^{1}\right)\right] .
$$

Also define a "trace" operator by

$$
T_{p}:=\sum_{\tau \in T} \tau \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{p} / K\right)\right],
$$

where T is a set of coset representatives for $\operatorname{Gal}\left(K^{p} / K^{1}\right) \leq \operatorname{Gal}\left(K^{p} / K\right)$.
Define the Kolyvagin class $c(p) \in H^{1}(K, E[\ell])$ by

$$
c(p)(\sigma):=\sigma\left(\frac{1}{\ell} T_{p} D_{p} P_{p}\right)-\frac{1}{\ell} T_{p} D_{p} P_{p}-\frac{1}{\ell}(\sigma-1)\left(T_{p} D_{p} P_{p}\right) .
$$

The Tate-Shafarevich group

Kolyvagin proved something more.

The Tate-Shafarevich group

Kolyvagin proved something more.

There is an exact diagram

$$
\begin{gathered}
0 \longrightarrow E(K) / \ell E(K) \xrightarrow{\delta} H^{1}(K, E[\ell]) \longrightarrow H^{1}(K, E)[\ell] \longrightarrow 0 \\
0 \rightarrow \prod_{v} E\left(K_{v}\right) / \ell E\left(K_{v}\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E[\ell]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow 0
\end{gathered}
$$

The Tate-Shafarevich group

Kolyvagin proved something more.

There is an exact diagram

$$
\begin{gathered}
0 \longrightarrow E(K) / \ell E(K) \longrightarrow H^{1}(K, E[\ell]) \longrightarrow H^{1}(K, E)[\ell] \longrightarrow 0 \\
\downarrow \\
0 \rightarrow \prod_{v} E\left(K_{v}\right) / \ell E\left(K_{v}\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E[\ell]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow 0
\end{gathered}
$$

The classical Selmer group is

$$
\operatorname{Sel}(K, E[\ell]):=\operatorname{ker} \sigma .
$$

The Tate-Shafarevich group

Kolyvagin proved something more.

There is an exact diagram

$$
\begin{gathered}
0 \longrightarrow E(K) / \ell E(K) \longrightarrow H^{1}(K, E[\ell]) \longrightarrow H^{1}(K, E)[\ell] \longrightarrow 0 \\
\downarrow \\
0 \rightarrow \prod_{v} E\left(K_{v}\right) / \ell E\left(K_{v}\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E[\ell]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[\ell] \rightarrow 0
\end{gathered}
$$

The classical Selmer group is

$$
\operatorname{Sel}(K, E[\ell]):=\operatorname{ker} \sigma .
$$

The Tate-Shafarevich group is

$$
Ш(K, E):=\operatorname{ker} \tau .
$$

The Tate-Shafarevich group

Kolyvagin proved something more.

There is an exact sequence

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \rightarrow Ш(K, E)[\ell] \rightarrow 0 .
$$

The Tate-Shafarevich group

Kolyvagin proved something more.

There is an exact sequence

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \rightarrow Ш(K, E)[\ell] \rightarrow 0 .
$$

Corollary
Let $\widehat{h}\left(P_{K}\right) \neq 0$ and $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then $\mathrm{rk}_{\mathbb{Z}} E(K)=1$

The Tate-Shafarevich group

Kolyvagin proved something more.

There is an exact sequence

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \rightarrow \amalg(K, E)[\ell] \rightarrow 0 .
$$

Corollary
Let $\widehat{h}\left(P_{K}\right) \neq 0$ and $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then $\mathrm{rk}_{\mathbb{Z}} E(K)=1$ and $\amalg(K, E)[\ell]=0$.

The Tate-Shafarevich group

Kolyvagin proved something more.

There is an exact sequence

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \rightarrow Ш(K, E)[\ell] \rightarrow 0 .
$$

Corollary
Let $\widehat{h}\left(P_{K}\right) \neq 0$ and $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then $\mathrm{rk}_{\mathbb{Z}} E(K)=1$ and $\amalg(K, E)[\ell]=0$.

Kolyvagin also proved $\amalg(K, E)$ is finite.

Thank you!

For more details:

The Euler system of Heegner points

London Junior Number Theory Seminar
Tuesday, 10 May 2022, 17:15-18:15
Room K6.63, King's Building, Strand Campus, King's College London

Please come! ©

[^0]: ${ }^{2}$ Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves

