

L-functions of Dirichlet twists of elliptic curves: computations and congruences

PhD viva examination

David Kurniadi Angdinata

University College London

Monday, 1 December 2025

Notation

Let K be a global field.

For each place $v \in \mathcal{V}_K$,

- ▶ let q_v be the size of its residue field,
- ▶ let I_v be its inertia group, and
- ▶ let φ_v be a choice of geometric Frobenius.

For a λ -adic representation ρ of K ,

- ▶ let $\mathfrak{a}(\rho)$ be its global Artin conductor,
- ▶ let $\epsilon(\rho)$ be its global epsilon factor, and
- ▶ let $W(\rho)$ be its global root number.

Examples of λ -adic representations of K will include

- ▶ the ℓ -adic cohomology $\rho_{A,\ell}^\vee$ of an abelian variety A ,
- ▶ the ℓ -adic Tate module $\rho_{E,\ell}$ of an elliptic curve E ,
- ▶ an Artin representation ϱ , and
- ▶ a primitive Dirichlet character χ .

Classical L-functions

The **L-function** of an abelian variety A over K is the complex function

$$L(A, s) := \prod_{v \in \Upsilon_K} \frac{1}{L_v(A, s)},$$

where for each place $v \in \Upsilon_K$, the **local Euler factor** of A is given by

$$L_v(A, s) := \det(1 - (\rho_{A, \ell}^\vee)^{l_v}(\varphi_v) \cdot q_v^{-s}),$$

for some prime $\ell \nmid q_v$.

Conjecture (Birch–Swinnerton-Dyer (BSD))

Assume that $L(A, s)$ has meromorphic continuation at $s = 1$. Then its order of vanishing at $s = 1$ is $\text{rk}(A)$, and its leading term is

$$L^*(A, 1) = \frac{\Omega(A) \cdot \text{Reg}(A) \cdot \#\text{III}(A) \cdot \text{Tam}(A)}{\mu_K \cdot \#\text{tor}(A) \cdot \#\text{tor}(A^\vee)}.$$

Twisted L-functions

Over a finite Galois extension K' of K , Artin's formalism gives

$$L(A/K', s) = \prod_{\varrho} L(A, \varrho, s),$$

where ϱ runs over Artin representations of K that factor through K' and $L(A, \varrho, s)$ are certain **twisted L-functions** of A .

One may ask a variety of theoretical and computational questions.

- ▶ Are there algebraic or integral versions of $L^*(A, \varrho, 1)$?
- ▶ Can $L^*(A, \varrho, 1)$ be expressed in terms of BSD invariants?
- ▶ Does $L^*(A, \varrho, 1)$ have a predictable asymptotic distribution?
- ▶ Can $L^*(A, \varrho, 1)$ be computed numerically or algorithmically?
- ▶ Is $L^*(A, \varrho, 1)$ directly related to $L^*(A, 1)$?

I provide partial answers when $A = E$ is an elliptic curve and $\varrho = \chi$ is a primitive Dirichlet character over the global fields $K = \mathbb{Q}$ and $K = \mathbb{F}_q(t)$.

Algebraic L-values

When $K = \mathbb{Q}$, the **algebraic L-value** of A twisted by ϱ is defined by

$$\mathcal{L}(A, \varrho) := \frac{L^*(A, \varrho, 1) \cdot \sqrt{\mathfrak{a}(\varrho)}^{\dim(A)}}{W(\varrho)^{\dim(A)} \cdot \Omega_+(A)^{\dim(\varrho^{\varsigma=+})} \cdot \Omega_-(A)^{\dim(\varrho^{\varsigma=-})}},$$

where ς is a lift of complex conjugation in $G_{\mathbb{Q}}$, and denote

$$\mathcal{L}(A) := \mathcal{L}(A, 1).$$

If $A = E$ and $\varrho = \chi$, then

$$\mathcal{L}(E, \chi) = \frac{L^*(E, \chi, 1) \cdot \mathfrak{a}(\chi)}{\mathfrak{g}(\chi) \cdot \Omega_{\chi(-1)}(E)},$$

where $\mathfrak{g}(\chi)$ is the Gauss sum of χ , and

$$\mathcal{L}(E) = \frac{L^*(E, 1)}{\Omega(E)}.$$

Formal L-functions

When $K = \mathbb{F}_q(C)$, rationality gives

$$L(A, \varrho, s) = \frac{P_1(\rho_{A,\ell}^\vee \otimes \varrho, q^{-s})}{P_0(\rho_{A,\ell}^\vee \otimes \varrho, q^{-s}) \cdot P_2(\rho_{A,\ell}^\vee \otimes \varrho, q^{-s})},$$

where there are canonical $\overline{\mathbb{Q}_\ell}$ -representations $H^n(\rho)$ such that

$$P_n(\rho, T) := \det(1 - T \cdot H^n(\rho)(\varphi_q)) \in \overline{\mathbb{Q}}[T].$$

Define the **formal L-function** of A twisted by ϱ by

$$\mathcal{L}(A, \varrho, T) := \frac{P_1(\rho_{A,\ell}^\vee \otimes \varrho, T)}{P_0(\rho_{A,\ell}^\vee \otimes \varrho, T) \cdot P_2(\rho_{A,\ell}^\vee \otimes \varrho, T)},$$

so that $L(A, \varrho, s) = \mathcal{L}(A, \varrho, q^{-s})$, and denote

$$\mathcal{L}(A, T) := \mathcal{L}(A, 1, T).$$

Algebraicity of L-functions

Assuming an appropriate automorphic correspondence for E over \mathbb{Q}^χ , a local argument shows that $\mathcal{L}(E, \varrho)$ is the algebraic version of $L^*(E, \varrho, 1)$.

Theorem (Theorem 4.2 of Bouganis–Dokchitser 2007)

Let $K = \mathbb{Q}$. If $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then

- ▶ $\mathcal{L}(E, \chi) \in \mathbb{Q}(\chi)$, and
- ▶ $\mathcal{L}(E, \chi)^\varsigma = \mathcal{L}(E, \varsigma \circ \chi)$ for all $\varsigma \in G_{\mathbb{Q}}$.

They deduced this from the corresponding result for Rankin–Selberg convolutions of certain parallel weight primitive Hilbert modular forms.

A similar local argument works for $\mathcal{L}(E, \chi, T)$ without assumptions.

Theorem (Theorem 5.7 of thesis)

Let $K = \mathbb{F}_q(C)$. Then

- ▶ $\mathcal{L}(E, \chi, T) \in \mathbb{Q}(\chi)(T)$, and
- ▶ $\mathcal{L}(E, \chi, T)^\varsigma = \mathcal{L}(E, \varsigma \circ \chi, T)$ for all $\varsigma \in G_{\mathbb{Q}}$.

Integrality of L-functions

Under assumptions on the Manin constant $\mathfrak{c}_0(E)$, Wiersema–Wuthrich 2022 proved that $\mathcal{L}(E, \chi)$ is integral in many cases, by formally manipulating its expression as period sums of modular symbols.

Theorem (Proposition 3.8 of thesis)

Let $K = \mathbb{Q}$. If χ has prime order $\ell \nmid \mathfrak{c}_0(E)$ and $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then

- ▶ $\mathcal{L}(E, \chi) \in \mathbb{Z}_\ell[\zeta_\ell]$, and
- ▶ $\mathcal{L}(E) \cdot \#E(\mathbb{F}_v) \in \mathbb{Z}_\ell$ for any odd prime $v \nmid \mathfrak{a}(E)$.

A similar result holds for $\mathcal{L}(E, \chi, T)$ when E and χ are generic.

Theorem (Proposition 5.10 of thesis)

Let $K = \mathbb{F}_q(C)$. If χ is separable geometric and $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then

- ▶ $\mathcal{L}(E, \chi, T) \in \mathbb{Q}(\chi)[T]$, and
- ▶ $\mathcal{L}(E, T) \in \mathbb{Q}[T]$ if E is non-constant.

Congruences of L-functions

When χ has prime order ℓ , a bit of further work gives a congruence with $\mathcal{L}(E)$ or $\mathcal{L}(E, T)$ modulo the prime $(1 - \zeta_\ell)$ of $\mathbb{Z}[\zeta_\ell]$ above ℓ .

Theorem (Corollary 3.9 of thesis)

Let $K = \mathbb{Q}$. If $\ell \nmid c_0(E) \cdot \mathfrak{a}(\chi)$ and $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then

$$\mathcal{L}(E, \chi) \equiv \mathcal{L}(E) \cdot \prod_{v \mid \mathfrak{a}(\chi)} (-L_v(E, 1)) \pmod{1 - \zeta_\ell}.$$

Theorem (Theorem 5.12 of thesis)

Let $K = \mathbb{F}_q(t)$. If E is non-constant and χ is separable geometric, and furthermore $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then

$$\mathcal{L}(E, \chi, T) \equiv \mathcal{L}(E, T) \cdot \prod_{v \mid \mathfrak{a}(\chi)} \mathcal{L}_v(E, T) \pmod{1 - \zeta_\ell}.$$

Ideals of L-values

The ideal of $\mathbb{Z}[\chi]$ generated by $\mathcal{L}(E, \chi)$ and $\mathcal{L}(E, \chi, q^{-1})$ can be expressed in terms of χ -isotypic components of $\text{Reg}(E)$ and $\text{III}(E)$.

Theorem (Proposition 7.3 of Burns–Castillo 2024)

Let $K = \mathbb{Q}$. Assume that the refined BSD conjecture holds over K^χ/K . If $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then there is an explicit finite set $S(E, \chi) \subseteq \Upsilon_{\mathbb{Q}(\chi)}$ such that for all $\lambda \in \Upsilon_{\mathbb{Q}(\chi)} \setminus S(E, \chi)$,

$$\mathcal{L}(E, \chi) \cdot \prod_{v \mid \mathfrak{a}(\chi)} L_v(E, \chi, 1) \cdot \mathbb{Z}[\chi]_\lambda = \text{Reg}(E, \chi) \cdot \text{char}(\text{III}(E, \chi)).$$

Theorem (Theorem 7.12 of Kim–Tan–Trihan–Tsoi 2024)

Let $K = \mathbb{F}_q(C)$. Assume that $\text{III}(E/K^\chi)$ is finite. Then there is an explicit finite set $S(E, \chi) \subseteq \Upsilon_{\mathbb{Q}(\chi)}$ such that for all $\lambda \in \Upsilon_{\mathbb{Q}(\chi)} \setminus S(E, \chi)$,

$$\mathcal{L}(E, \chi, q^{-1}) \cdot \prod_{v \mid \mathfrak{a}(\chi)} L_v(E, \chi, 1) \cdot \mathbb{Z}[\chi]_\lambda = \text{Reg}_\lambda(E, \chi) \cdot \text{char}(\text{III}_\lambda(E, \chi)).$$

Norms of L-values

When $K = \mathbb{Q}$, Dokchitser–Evans–Wiersema 2021 computed the norm of $\mathcal{L}(E, \chi)$ in terms of $\text{BSD}(E)$ and $\text{BSD}(E/\mathbb{Q}^\chi)$, which are invariants such that the BSD conjecture over \mathbb{Q} and over \mathbb{Q}^χ respectively read

$$\mathcal{L}(E) = \text{BSD}(E), \quad \mathcal{L}(E/\mathbb{Q}^\chi) = \text{BSD}(E/\mathbb{Q}^\chi).$$

Theorem (Proposition 3.13 of thesis)

Let $K = \mathbb{Q}$. Assume the Manin constant conjecture $c_1(E) = 1$ and the BSD conjecture hold over \mathbb{Q} and over \mathbb{Q}^χ . If $L(E, 1), L(E, \chi, 1) \neq 0$, χ has prime order ℓ , and $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then

$$\text{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_\ell)^+}(\mathcal{L}(E, \chi) \cdot \chi(\mathfrak{a}(E))^{(\ell-1)/2}) = \sqrt{\text{BSD}(E/\mathbb{Q}^\chi) / \text{BSD}(E)}.$$

There is an ongoing project led by Maistret and Wiersema as part of Women In Numbers Europe 2025 for the $K = \mathbb{F}_q(C)$ analogue.

Predicting algebraic L-values

Dokchitser–Evans–Wiersema 2021 also gave examples of arithmetically identical elliptic curves E_1 and E_2 such that $\mathcal{L}(E_1, \chi) \neq \mathcal{L}(E_2, \chi)$.

When $\ell = 3$, this difference can be explained by the congruence.

Theorem (Corollary 3.14 of thesis)

Let $K = \mathbb{Q}$. Assume the Manin constant conjecture $\mathfrak{c}_1(E) = 1$ and the BSD conjecture hold over \mathbb{Q} and over \mathbb{Q}^χ . If $L(E, 1), L(E, \chi, 1) \neq 0$, χ is cubic, and $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$, then

$$\mathcal{L}(E, \chi) = u \cdot \overline{\chi}(\mathfrak{a}(E)) \cdot \sqrt{\text{BSD}(E/\mathbb{Q}^\chi) / \text{BSD}(E)},$$

where $u \in \{\pm 1\}$ is such that

$$u \equiv \frac{\text{BSD}(E) \cdot \prod_{v|\mathfrak{a}(\chi)} (-\#E(\mathbb{F}_v))}{\sqrt{\text{BSD}(E/\mathbb{Q}^\chi) / \text{BSD}(E)}} \pmod{3}.$$

Biases of algebraic L-values

Kisilevsky–Nam 2025 observed biases in the distribution of

$$\widetilde{\mathcal{L}}^+(E, \chi) := \frac{\text{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_\ell)^+}(\mathcal{L}(E, \chi) \cdot (1 + \bar{\chi}(\mathfrak{a}(E))))}{\gcd \left\{ \text{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_\ell)^+}(\mathcal{L}(E, \chi) \cdot (1 + \bar{\chi}(\mathfrak{a}(E)))) : \chi \in \mathcal{X}_\ell^{< N} \right\}},$$

as χ varies over the set $\mathcal{X}_\ell^{< N}$ of primitive Dirichlet characters of \mathbb{Q} of odd prime order $\ell \nmid \mathfrak{c}_0(E)$ and prime $\mathfrak{a}(\chi) < N$ with $N \rightarrow \infty$.



(g) $|l| = 7$: Top -7 bottom 7

(h) $|l| = 8$: Top 8 bottom -8

(i) $|l| = 9$: Top -9 bottom 9

FIGURE 50. 11a1: $(\alpha, \beta) = (1, 3)$ Ratio (7.11) $x_{6,E}^{(\alpha, \beta)}(X; l)/X^{1/2} \log^2(X)$

Predicting residual L-densities

This distribution can be quantified by computing the **residual L-density** of E modulo an odd prime $\ell \nmid c_0(E)$ defined by

$$\mathfrak{d}_{E,\ell}(n) := \lim_{N \rightarrow \infty} \frac{\#\{\chi \in \mathcal{X}_\ell^{<N} : \mathcal{L}(E, \chi) \equiv n \pmod{1 - \zeta_\ell}\}}{\#\mathcal{X}_\ell^{<N}}.$$

Chebotarev's density theorem reduces this to computations in $\text{im}(\rho_{E,\ell})$.

Theorem (Theorem 4.11 of thesis)

Let $K = \mathbb{Q}$. Assume that the BSD conjecture holds over \mathbb{Q} . If $L(E, 1) \neq 0$, then $\mathfrak{d}_{E,\ell}$ only depends on $\text{ord}_\ell(\text{BSD}(E))$ and on $\text{im}(\bar{\rho}_{E,\ell^2})$.

A similar argument recovers the distribution of Kisilevsky–Nam 2025.

Theorem (Proposition 4.19 of thesis)

Let $K = \mathbb{Q}$. If E has Cremona label 11a1, 15a1, or 17a1, and χ is cubic, then the distribution of $\widetilde{\mathcal{L}}^+(E, \chi)$ can be predicted precisely.

Bounding denominators of L-values

Lorenzini 2011 described the cancellations between $\text{tor}(E)$ and $\text{Tam}(E)$.

Theorem (Proposition 4.5 of thesis)

Let $K = \mathbb{Q}$. If $\ell \nmid 3 \cdot c_0(E)$ is an odd prime, then

$$\text{ord}_\ell(\#\text{tor}(E)) \leq \text{ord}_\ell(\text{Tam}(E)).$$

The $\ell = 3$ analogue can be deduced from the integrality of $\mathcal{L}(E)$ and the classification of $\text{im}(\rho_{E,3})$ by Rouse–Sutherland–Zureick-Brown 2022.

Theorem (Theorem 4.9 of thesis)

Let $K = \mathbb{Q}$. Assume that the BSD conjecture holds over \mathbb{Q} . If $L(E, 1) \neq 0$ and $\ell \nmid c_0(E)$, then

$$\text{ord}_\ell(\mathcal{L}(E)) = \text{ord}_\ell(\text{BSD}(E)) \geq -1.$$

There is an ongoing project by Melistas and I for the $K = \mathbb{F}_q(t)$ analogue.

Computations of L-values

Much of the previous explorations were only possible thanks to efficient algorithms to compute $\mathcal{L}(E, \chi)$ in computer algebra systems.

Algorithm (Dokchitser 2004)

Computes $L(M, 0)$ where M is a motive over a number field.

There are almost no public implementations for global function fields.

Algorithm (Comeau-Lapointe–David–Lalín–Li 2022)

Computes $\mathcal{L}(E, \chi, T)$ where E and χ are defined over $\mathbb{F}_q(t)$.

The proof of the Weil conjectures gives an algorithm for general λ -adic representations, which is used by Maistret and Wiersema in their project.

Algorithm (Algorithm 5.15 of thesis)

Computes $\mathcal{L}(\rho, T)$ where ρ is an almost everywhere unramified λ -adic representation of $\mathbb{F}_q(C)$ (that is pure of weight w and $\rho^\vee \cong \rho^s \otimes \overline{\mathbb{Q}}(w)$).

Computing formal L-functions

Let ρ be an almost everywhere unramified λ -adic representation of $\mathbb{F}_q(C)$.

Theorem (Proposition 5.13 of thesis)

If $\rho^{G_{\mathbb{F}_q(C)}} = 0$, then $\mathcal{L}(\rho, T)$ is a polynomial of degree

$$d := \deg \mathfrak{a}(\rho) + (2g(C) - 2)\dim \rho,$$

where $g(C)$ is the genus of C . Furthermore, if ρ is pure of weight w and $\rho^\vee \cong \rho^c \otimes \overline{\mathbb{Q}}(w)$, then the functional equation gives $\epsilon(\rho) \in \mathbb{C}^\times$ such that

$$\mathcal{L}(\rho, T) = \epsilon(\rho) \cdot T^d \cdot \mathcal{L}(\rho, (q^{w+1}T)^{-1})^c.$$

In particular, if $\{c_n\}_{n \in \mathbb{N}}$ denotes the coefficients of $\mathcal{L}(\rho, T)$, then

$$c_n = \begin{cases} 1 & \text{if } n = 1, \\ q^{(w+1)(n-d)} \cdot \epsilon(\rho) \cdot c_{d-n}^c & \text{if } 0 < n < d, \\ \epsilon(\rho) & \text{if } n = d, \\ 0 & \text{otherwise.} \end{cases}$$

Computing twisted L-functions

There is a refinement of the algorithm for tensor products $\rho \otimes \sigma$.

Theorem (Theorem 2.7 of thesis)

Under the previous assumptions, if $(\mathfrak{a}(\rho), \mathfrak{a}(\sigma)) = 1$, then

$$\epsilon(\rho \otimes \sigma) = \frac{\epsilon(\rho)^{\dim \sigma} \cdot \epsilon(\sigma)^{\dim \rho} \cdot \det \sigma(\mathfrak{a}(\rho)) \cdot \det \rho(\mathfrak{a}(\sigma))}{q^{(g(C)-1) \dim \rho \dim \sigma}}.$$

The remainder of the thesis provides explicit examples of $\mathcal{L}(\rho \otimes \sigma, T)$ when ρ and σ arise from elliptic curves or Dirichlet characters.

In particular, the examples use an alternative implementation of Dirichlet characters of $\mathbb{F}_q(t)$ that is more amenable to computation.

Theorem (Theorem 6.6 of thesis)

Let $K = \mathbb{F}_q(t)$. Then there is a canonical representation of any $u \in (\mathbb{F}_q[t]/m)^\times$ that allows for an efficient computation of $\chi(u)$.