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Notation
Let K be a global field.

For each place v € Tk,
» let g, be the size of its residue field,
» let /, be its inertia group, and
» let ¢, be a choice of geometric Frobenius.
For a A-adic representation p of K,
> let a(p) be its global Artin conductor,
> let €(p) be its global epsilon factor, and
> let W(p) be its global root number.
Examples of A-adic representations of K will include
> the (-adic cohomology py , of an abelian variety A,
> the {-adic Tate module pg ¢ of an elliptic curve E,
» an Artin representation g, and

» a primitive Dirichlet character .
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Classical L-functions
The L-function of an abelian variety A over K is the complex function
L(A,
9= 11 oy A s)
veTk

where for each place v € Tk, the local Euler factor of A is given by

Lu(A,s) := det(L — (px )" (ov) - 4,°),

for some prime (1 g, .

Conjecture (Birch—Swinnerton-Dyer (BSD))

Assume that L(A,s) has meromorphic continuation at s = 1. Then its
order of vanishing at s = 1 is rk(A), and its leading term is

Q(A) - Reg(A) - #III(A) - Tam(A)

L*(Aa 1) = K - #tor(A) . #tOf(AV)
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Twisted L-functions

Over a finite Galois extension K’ of K, Artin’s formalism gives

L(A/K',s) HL A o,

where o runs over Artin representations of K that factor through K’ and
L(A, o,s) are certain twisted L-functions of A.

One may ask a variety of theoretical and computational questions.
» Are there algebraic or integral versions of L*(A, 0,1)?
» Can L*(A,0,1) be expressed in terms of BSD invariants?
> Does L*(A, o,1) have a predictable asymptotic distribution?
> Can L*(A, p,1) be computed numerically or algorithmically?
> Is L*(A, o,1) directly related to L*(A,1)?

| provide partial answers when A = E is an elliptic curve and o = x is a
primitive Dirichlet character over the global fields K = Q and K = F,4(t).
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Algebraic L-values
When K = Q, the algebraic L-value of A twisted by g is defined by

% dim(A)
L (A7 Qvl) ) Cl(Q)

X(A; Q) = W(Q)dim(A) . Q+(A)dim(9<:+) ) Q_(A)dim(f:*)’

where < is a lift of complex conjugation in Gg, and denote
Z(A) = Z(A1).
If A= E and o = ¥, then

L*(E7Xa 1) i a(X)
9(x) - Qy(-1)(E)’

where g(x) is the Gauss sum of x, and

X(E?X) =

Z(E) =
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Formal L-functions
When K =T,(C), rationality gives

Pl(PX’z & 0, qis)

L(A 5 0,5) = ,
(A.0.5) Po(pa, ® 0,97°) - Pa(pa,® 0,q47°)

where there are canonical Q,-representations H"(p) such that
Pa(p, T) :=det(1 = T - H"(p)(q)) € QIT].
Define the formal L-function of A twisted by ¢ by

Pi(pa,® 0, T)

L(A o, T):= )
(A0, T) Po(pp, @0, T)  Papp, @0, T)

so that L(A, ¢,s) = L(A, 0,q™*), and denote

L(A,T) = L(A1,T).
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Algebraicity of L-functions

Assuming an appropriate automorphic correspondence for E over QX, a
local argument shows that .Z(E, o) is the algebraic version of L*(E, p,1).

Theorem (Theorem 4.2 of Bouganis—Dokchitser 2007)
Let K=Q. If (a(E),a(x)) =1, then

> Z(E,x) € Q(x), and

> Z(E,x) =Z(E,cox) forall s € Gy.

They deduced this from the corresponding result for Rankin—Selberg
convolutions of certain parallel weight primitive Hilbert modular forms.

A similar local argument works for L(E, x, T) without assumptions.

Theorem (Theorem 5.7 of thesis)
Let K =TF4(C). Then
> L(E,x, T) € Q(X)(T), and
> L(E,x,T) =L(E,cox,T) forall s € Gy.
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Integrality of L-functions

Under assumptions on the Manin constant ¢g(E), Wiersema—Wauthrich
2022 proved that .Z(E, x) is integral in many cases, by formally
manipulating its expression as period sums of modular symbols.
Theorem (Proposition 3.8 of thesis)
Let K = Q. If x has prime order £t ¢o(E) and (a(E),a(x)) =1, then
> f(E,X) € Zz[Cz], and
> L(E)-#E(F,) € Z; for any odd prime v t a(E).

A similar result holds for L(E, x, T) when E and x are generic.
Theorem (Proposition 5.10 of thesis)
Let K =TFq(C). If x is separable geometric and (a(E),a(x)) = 1, then

> L(E,x, T) € QOIIT], and
» L(E, T) e Q[T] if E is non-constant.
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Congruences of L-functions

When x has prime order ¢, a bit of further work gives a congruence with
Z(E) or L(E, T) modulo the prime (1 — () of Z[(,] above Z.

Theorem (Corollary 3.9 of thesis)
Let K=Q. If£1co(E)-a(x) and (a(E),a(x)) =1, then

Z(E, Z(E)- J] (~L(E,1)) mod (1-¢).

via(x)

Theorem (Theorem 5.12 of thesis)

Let K =TF4(t). If E is non-constant and X is separable geometric, and
furthermore (a(E), a(x)) =1, then

LE,x,T)=L(E,T)- [[ £AE.T) mod (1-¢).
vla(x)
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Ideals of L-values

The ideal of Z[x] generated by .Z(E, x) and L(E,x,q ') can be
expressed in terms of x-isotypic components of Reg(E) and III(E).

Theorem (Proposition 7.3 of Burns—Castillo 2024)

Let K = Q. Assume that the refined BSD conjecture holds over KX /K.
If (a(E),a(x)) = 1, then there is an explicit finite set S(E, x) € Tq(y)
such that for all A € T, \ S(E, x),

) [ Lo(E.x.1)Z[x]x = Reg(E, x) - char(III(E, x)).
via(x)

Theorem (Theorem 7.12 of Kim—Tan—Trihan—Tsoi 2024)

Let K =TF4(C). Assume that III(E/KX) is finite. Then there is an
explicit finite set S(E, x) C Tq(y) such that for all X € T, \ S(E, x),

LE,x,q ) ] Lo(E,x;1) - Z[x]x = Regy(E, X) - char(ITIy(E, X))
vlatx)
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Norms of L-values

When K = Q, Dokchitser—Evans—Wiersema 2021 computed the norm of
Z(E, x) in terms of BSD(E) and BSD(E/QX), which are invariants such
that the BSD conjecture over Q and over QX respectively read

Z(E)=BSD(E),  Z(E/QX)=BSD(E/QX).

Theorem (Proposition 3.13 of thesis)

Let K = Q. Assume the Manin constant conjecture ¢1(E) = 1 and the
BSD conjecture hold over Q and over QX. If L(E,1),L(E,x,1) #0, x
has prime order ¢, and (a(E), a(x)) = 1, then

Nm2“)" (Z(E, x) - x(a(E))~V/?) = \/BSD(E/Qx)/ BSD(E).

There is an ongoing project led by Maistret and Wiersema as part of
Women In Numbers Europe 2025 for the K = F,(C) analogue.
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Predicting algebraic L-values

Dokchitser—Evans—Wiersema 2021 also gave examples of arithmetically
identical elliptic curves £y and E, such that Z(E, x) # Z(Ez, X)-

When ¢ = 3, this difference can be explained by the congruence.

Theorem (Corollary 3.14 of thesis)

Let K = Q. Assume the Manin constant conjecture ¢1(E) = 1 and the
BSD conjecture hold over Q and over QX. If L(E,1),L(E, x,1) #0, x is
cubic, and (a(E), a(x)) = 1, then

Z(E,x) = u-X(a(E)) - /BSD(E/Q)/ BSD(E),
where u € {1} is such that

BSD(E) - [Ty ja(x) (—#E(F.))
\/BSD(E/Qx)/BSD(E)

Il
Q.
w

u
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Biases of algebraic L-values

Kisilevsky—Nam 2025 observed biases in the distribution of

)+

PN NmE ) (Z(E.x) - (1 + X(a(E))))
T e (N (Z(E ) (L R@E)) v € X

as x varies over the set Xf’v of primitive Dirichlet characters of Q of odd
prime order £ { ¢o(E) and prime a(x) < N with N — oo.

(g) |!| = 7: Top -7 bottom 7 (h) |I| = 8: Top 8 bottom -8 (i) [{| =9: Top -9 bottom 9

FIGURE 50. 11al: (o, 8) = (1,3) Ratio (7.11) 25" (X;1)/X "/ log?(X)
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Predicting residual L-densities

This distribution can be quantified by computing the residual L-density
of E modulo an odd prime £ 1 ¢o(E) defined by

XN 2(Ex) = d(1-
oe4(n) ;== lim #{x €&, (E,x) - n mod (1—¢)}
N— oo 7#étz<
Chebotarev's density theorem reduces this to computations in im(pg ¢).

Theorem (Theorem 4.11 of thesis)

Let K = Q. Assume that the BSD conjecture holds over Q. If
L(E,1) #0, then dg 4 only depends on ord;(BSD(E)) and on im(pg ;).

A similar argument recovers the distribution of Kisilevsky—Nam 2025.

Theorem (Proposition 4.19 of thesis)

Let K= Q. If E has Cremona label 11al, 15al, or 17al, and x is cubic,
then the distribution of ¥ (E, x) can be predicted precisely.
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Bounding denominators of L-values
Lorenzini 2011 described the cancellations between tor(E) and Tam(E).

Theorem (Proposition 4.5 of thesis)
Let K=Q. If£13-¢(E) is an odd prime, then

ordy(#tor(E)) < ordy(Tam(E)).

The ¢ = 3 analogue can be deduced from the integrality of .Z(E) and
the classification of im(pg 3) by Rouse-Sutherland—Zureick-Brown 2022.

Theorem (Theorem 4.9 of thesis)

Let K = Q. Assume that the BSD conjecture holds over Q. If
L(E,1) # 0 and £ 1 ¢o(E), then

ord/(Z(E)) = ords(BSD(E)) > —1.

There is an ongoing project by Melistas and | for the K = Fy(t) analogue.
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Computations of L-values

Much of the previous explorations were only possible thanks to efficient
algorithms to compute .Z(E, x) in computer algebra systems.

Algorithm (Dokchitser 2004)

Computes L(M,0) where M is a motive over a number field.

There are almost no public implementations for global function fields.
Algorithm (Comeau-Lapointe-David-Lalin-Li 2022)
Computes L(E, x, T) where E and x are defined over Fq(t).

The proof of the Weil conjectures gives an algorithm for general A-adic
representations, which is used by Maistret and Wiersema in their project.

Algorithm (Algorithm 5.15 of thesis)

Computes L(p, T) where p is an almost everywhere unramified \-adic
representation of Fo(C) (that is pure of weight w and p¥ = p* ® Q(w)).
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Computing formal L-functions
Let p be an almost everywhere unramified A-adic representation of F(C).

Theorem (Proposition 5.13 of thesis)
prGWC) =0, then L(p, T) is a polynomial of degree

d :=dega(p) + (2g(C) — 2) dim p,

where g(C) is the genus of C. Furthermore, if p is pure of weight w and
p¥ = ps @ Q(w), then the functional equation gives €(p) € C* such that

L(p, T)=€(p)- T L(p,(¢" T T) 7).

In particular, if {c,}nen denotes the coefficients of L(p, T), then

1 ifn=1,
. g HDn=d) L ¢(p).c5 , if0O<n<d,
n E(p) ifn= d7

0 otherwise.
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Computing twisted L-functions
There is a refinement of the algorithm for tensor products p ® o.

Theorem (Theorem 2.7 of thesis)
Under the previous assumptions, if (a(p),a(c)) =1, then

€(p)™7 - e(0)*™ " - det o(a(p)) - det p(a(o))

(p®o)= qe(O) 1) dim pdim o

The remainder of the thesis provides explicit examples of L(p ® o, T)
when p and o arise from elliptic curves or Dirichlet characters.

In particular, the examples use an alternative implementation of Dirichlet
characters of Fy(t) that is more amenable to computation.

Theorem (Theorem 6.6 of thesis)

Let K =TF4(t). Then there is a canonical representation of any
u € (Fg[t]/m)* that allows for an efficient computation of x(u).
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