# L-functions of Dirichlet twists of elliptic curves: computations and congruences

PhD viva examination

David Kurniadi Angdinata

London School of Geometry and Number Theory

Monday, 1 December 2025

#### **Notation**

Let K be a global field.

For each place  $v \in \Upsilon_K$ ,

- let  $q_v$  be the size of its residue field,
- $\triangleright$  let  $I_v$  be its inertia group, and
- let  $\varphi_v$  be a choice of geometric Frobenius.

For a  $\lambda$ -adic representation  $\rho$  of K,

- let  $\mathfrak{a}(\rho)$  be its global Artin conductor,
- let  $\epsilon(\rho)$  be its global epsilon factor, and
- let  $W(\rho)$  be its global root number.

Examples of  $\lambda$ -adic representations of K will include

- ▶ the  $\ell$ -adic cohomology  $\rho_{A,\ell}^{\vee}$  of an abelian variety A,
- ▶ the  $\ell$ -adic Tate module  $\rho_{E,\ell}$  of an elliptic curve E,
- $\triangleright$  an Artin representation  $\varrho$ , and
- ightharpoonup a primitive Dirichlet character  $\chi$ .



#### Classical L-functions

The **L-function** of an abelian variety A over K is the complex function

$$L(A,s) := \prod_{v \in \Upsilon_K} \frac{1}{L_v(A,s)},$$

where for each place  $v \in \Upsilon_K$ , the **local Euler factor** of A is given by

$$L_{\nu}(A,s) := \det(1 - (
ho_{A,\ell}^{\vee})^{I_{
u}}(arphi_{
u}) \cdot q_{
u}^{-s}),$$

for some prime  $\ell \nmid q_v$ .

# Conjecture (Birch-Swinnerton-Dyer (BSD))

Assume that L(A, s) has meromorphic continuation at s = 1. Then its order of vanishing at s = 1 is rk(A), and its leading term is

$$L^*(A,1) = \frac{\Omega(A) \cdot \operatorname{Reg}(A) \cdot \# \operatorname{III}(A) \cdot \operatorname{Tam}(A)}{\mu_K \cdot \# \operatorname{tor}(A) \cdot \# \operatorname{tor}(A^{\vee})}.$$



#### Twisted L-functions

Over a finite Galois extension K' of K, Artin's formalism gives

$$L(A/K',s) = \prod_{\varrho} L(A,\varrho,s),$$

where  $\varrho$  runs over Artin representations of K that factor through K' and  $L(A, \varrho, s)$  are certain **twisted L-functions** of A.

One may ask a variety of theoretical and computational questions.

- ▶ Are there algebraic or integral versions of  $L^*(A, \varrho, 1)$ ?
- ▶ Can  $L^*(A, \varrho, 1)$  be expressed in terms of BSD invariants?
- ▶ Does  $L^*(A, \varrho, 1)$  have a predictable asymptotic distribution?
- ▶ Can  $L^*(A, \varrho, 1)$  be computed numerically or algorithmically?
- ls  $L^*(A, \varrho, 1)$  directly related to  $L^*(A, 1)$ ?

I provide partial answers when A=E is an elliptic curve and  $\varrho=\chi$  is a primitive Dirichlet character over the global fields  $K=\mathbb{Q}$  and  $K=\mathbb{F}_q(t)$ .

# Algebraic L-values

When  $K = \mathbb{Q}$ , the **algebraic L-value** of A twisted by  $\varrho$  is defined by

$$\mathscr{L}(A,\varrho) := \frac{L^*(A,\varrho,1) \cdot \sqrt{\mathfrak{a}(\varrho)}^{\dim(A)}}{W(\varrho)^{\dim(A)} \cdot \Omega_+(A)^{\dim(\varrho^{c=+})} \cdot \Omega_-(A)^{\dim(\varrho^{c=-})}},$$

where  $\varsigma$  is a lift of complex conjugation in  $G_{\mathbb{Q}}$ , and denote

$$\mathscr{L}(A) := \mathscr{L}(A,1).$$

If A = E and  $\varrho = \chi$ , then

$$\mathscr{L}(E,\chi) = \frac{L^*(E,\chi,1) \cdot \mathfrak{a}(\chi)}{\mathfrak{g}(\chi) \cdot \Omega_{\chi(-1)}(E)},$$

where  $\mathfrak{g}(\chi)$  is the Gauss sum of  $\chi$ , and

$$\mathscr{L}(E) = \frac{L^*(E,1)}{\Omega(E)}.$$



#### Formal L-functions

When  $K = \mathbb{F}_q(C)$ , rationality gives

$$L(A, \varrho, s) = \frac{P_1(\rho_{A,\ell}^{\vee} \otimes \varrho, q^{-s})}{P_0(\rho_{A,\ell}^{\vee} \otimes \varrho, q^{-s}) \cdot P_2(\rho_{A,\ell}^{\vee} \otimes \varrho, q^{-s})},$$

where there are canonical  $\overline{\mathbb{Q}_\ell}$ -representations  $H^n(\rho)$  such that

$$P_n(\rho, T) := \det(1 - T \cdot H^n(\rho)(\varphi_q)) \in \overline{\mathbb{Q}}[T].$$

Define the **formal L-function** of A twisted by  $\varrho$  by

$$\mathcal{L}(A,\varrho,T) := \frac{P_1(\rho_{A,\ell}^{\vee} \otimes \varrho,T)}{P_0(\rho_{A,\ell}^{\vee} \otimes \varrho,T) \cdot P_2(\rho_{A,\ell}^{\vee} \otimes \varrho,T)},$$

so that  $L(A, \varrho, s) = \mathcal{L}(A, \varrho, q^{-s})$ , and denote

$$\mathcal{L}(A, T) := \mathcal{L}(A, 1, T).$$



# Algebraicity of L-values

Assuming an appropriate automorphic correspondence for E over  $\mathbb{Q}^{\chi}$ , a local argument shows that  $\mathcal{L}(E,\varrho)$  is the algebraic version of  $L^*(E,\varrho,1)$ .

# Theorem (Theorem 4.2 of Bouganis-Dokchitser 2007)

Let  $K = \mathbb{Q}$ . If  $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$ , then

- $\blacktriangleright \mathscr{L}(\mathsf{E},\chi) \in \mathbb{Q}(\chi)$ , and
- $\mathscr{L}(E,\chi)^{\varsigma} = \mathscr{L}(E,\varsigma\circ\chi)$  for all  $\varsigma\in G_{\mathbb{Q}}$ .

They deduced this from the corresponding result for Rankin–Selberg convolutions of certain parallel weight primitive Hilbert modular forms.

A similar local argument works for  $\mathcal{L}(E,\chi,T)$  without assumptions.

# Theorem (Theorem 5.7 of thesis)

Let  $K = \mathbb{F}_a(C)$ . Then

- $\blacktriangleright$   $\mathcal{L}(E,\chi,T) \in \mathbb{Q}(\chi)(T)$ , and
- $\blacktriangleright$   $\mathcal{L}(E,\chi,T)^{\varsigma} = \mathcal{L}(E,\varsigma \circ \chi,T)$  for all  $\varsigma \in G_{\mathbb{Q}}$ .



# Integrality of L-values

Under assumptions on the Manin constant  $\mathfrak{c}_0(E)$ , Wiersema–Wuthrich 2022 proved that  $\mathscr{L}(E,\chi)$  is integral in many cases, by formally manipulating its expression as period sums of modular symbols.

# Theorem (Proposition 3.8 of thesis)

Let  $K = \mathbb{Q}$ . If  $\chi$  has prime order  $\ell \nmid \mathfrak{c}_0(E)$  and  $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$ , then

- $\blacktriangleright \ \mathscr{L}(\mathsf{E},\chi) \in \mathbb{Z}_{\ell}[\zeta_{\ell}]$ , and
- ▶  $\mathcal{L}(E) \cdot \#E(\mathbb{F}_{\nu}) \in \mathbb{Z}_{\ell}$  for any odd prime  $\nu \nmid \mathfrak{a}(E)$ .

A similar result holds for  $\mathcal{L}(E, \chi, T)$  when E and  $\chi$  are generic.

# Theorem (Proposition 5.10 of thesis)

Let  $K = \mathbb{F}_q(C)$ . If  $\chi$  is separable geometric and  $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$ , then

- $ightharpoonup \mathcal{L}(E,\chi,T) \in \mathbb{Q}(\chi)[T]$ , and
- $ightharpoonup \mathcal{L}(E,T) \in \mathbb{Q}[T]$  if E is non-constant.



# Congruences of L-values

When  $\chi$  has prime order  $\ell$ , a bit of further work gives a congruence with  $\mathscr{L}(E)$  or  $\mathcal{L}(E,T)$  modulo the prime  $(1-\zeta_\ell)$  of  $\mathbb{Z}[\zeta_\ell]$  above  $\ell$ .

## Theorem (Corollary 3.9 of thesis)

Let  $K=\mathbb{Q}$ . If  $\ell \nmid \mathfrak{c}_0(E) \cdot \mathfrak{a}(\chi)$  and  $(\mathfrak{a}(E),\mathfrak{a}(\chi))=1$ , then

$$\mathscr{L}(E,\chi) \equiv \mathscr{L}(E) \cdot \prod_{\nu \mid \mathfrak{a}(\chi)} (-L_{\nu}(E,1)) \mod (1-\zeta_{\ell}).$$

### Theorem (Theorem 5.12 of thesis)

Let  $K = \mathbb{F}_q(t)$ . If E is non-constant and  $\chi$  is separable geometric, and furthermore  $(\mathfrak{a}(E), \mathfrak{a}(\chi)) = 1$ , then

$$\mathcal{L}(E,\chi,T) \equiv \mathcal{L}(E,T) \cdot \prod_{v \mid a(\chi)} \mathcal{L}_v(E,T) \mod (1-\zeta_\ell).$$



#### Ideals of L-values

The ideal of  $\mathbb{Z}[\chi]$  generated by  $\mathscr{L}(E,\chi)$  and  $\mathscr{L}(E,\chi,q^{-1})$  can be expressed in terms of  $\chi$ -isotypic components of  $\operatorname{Reg}(E)$  and  $\operatorname{III}(E)$ .

# Theorem (Proposition 7.3 of Burns-Castillo 2024)

Let  $K = \mathbb{Q}$ . Assume that the refined BSD conjecture holds over  $K^{\chi}/K$ . If  $(\mathfrak{a}(E),\mathfrak{a}(\chi)) = 1$ , then there is an explicit finite set  $S(E,\chi) \subseteq \Upsilon_{\mathbb{Q}(\chi)}$  such that for all  $\lambda \in \Upsilon_{\mathbb{Q}(\chi)} \setminus S(E,\chi)$ ,

$$\mathscr{L}(E,\chi) \cdot \prod_{\nu \mid \mathfrak{a}(\chi)} L_{\nu}(E,\chi,1) \cdot \mathbb{Z}[\chi]_{\lambda} = \mathsf{Reg}(E,\chi) \cdot \mathsf{char}(\coprod(E,\chi)).$$

# Theorem (Theorem 7.12 of Kim-Tan-Trihan-Tsoi 2024)

Let  $K = \mathbb{F}_q(C)$ . Assume that  $\mathrm{III}(E/K^\chi)$  is finite. Then there is an explicit finite set  $S(E,\chi) \subseteq \Upsilon_{\mathbb{Q}(\chi)}$  such that for all  $\lambda \in \Upsilon_{\mathbb{Q}(\chi)} \setminus S(E,\chi)$ ,

$$\mathcal{L}(E,\chi,q^{-1}) \cdot \prod_{\nu \mid \mathfrak{a}(\chi)} \mathsf{L}_{\nu}(E,\chi,1) \cdot \mathbb{Z}[\chi]_{\lambda} = \mathsf{Reg}_{\lambda}(E,\chi) \cdot \mathsf{char}(\mathrm{III}_{\lambda}(E,\chi)).$$



#### Norms of L-values

When  $K=\mathbb{Q}$ , Dokchitser–Evans–Wiersema 2021 computed the norm of  $\mathscr{L}(E,\chi)$  in terms of BSD(E) and BSD( $E/\mathbb{Q}^\chi$ ), which are invariants such that the BSD conjecture over  $\mathbb{Q}$  and over  $\mathbb{Q}^\chi$  respectively read

$$\mathscr{L}(E) = \mathsf{BSD}(E), \qquad \mathscr{L}(E/\mathbb{Q}^\chi) = \mathsf{BSD}(E/\mathbb{Q}^\chi).$$

# Theorem (Proposition 3.13 of thesis)

Let  $K=\mathbb{Q}$ . Assume the Manin constant conjecture  $\mathfrak{c}_1(E)=1$  and the BSD conjecture hold over  $\mathbb{Q}$  and over  $\mathbb{Q}^\chi$ . If  $L(E,1), L(E,\chi,1)\neq 0$ ,  $\chi$  has prime order  $\ell$ , and  $(\mathfrak{a}(E),\mathfrak{a}(\chi))=1$ , then

$$\mathsf{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_{\ell})^{+}}(\mathscr{L}(E,\chi)\cdot\chi(\mathfrak{a}(E))^{(\ell-1)/2})=\sqrt{\mathsf{BSD}(E/\mathbb{Q}^{\chi})/\,\mathsf{BSD}(E)}.$$

There is an ongoing project led by Maistret and Wiersema as part of Women In Numbers Europe 2025 for the  $K = \mathbb{F}_q(C)$  analogue.



# Predicting algebraic L-values

Dokchitser–Evans–Wiersema 2021 also gave examples of arithmetically identical elliptic curves  $E_1$  and  $E_2$  such that  $\mathcal{L}(E_1,\chi) \neq \mathcal{L}(E_2,\chi)$ .

When  $\ell = 3$ , this difference can be explained by the congruence.

# Theorem (Corollary 3.14 of thesis)

Let  $K=\mathbb{Q}$ . Assume the Manin constant conjecture  $\mathfrak{c}_1(E)=1$  and the BSD conjecture hold over  $\mathbb{Q}$  and over  $\mathbb{Q}^\chi$ . If  $L(E,1), L(E,\chi,1)\neq 0$ ,  $\chi$  is cubic, and  $(\mathfrak{a}(E),\mathfrak{a}(\chi))=1$ , then

$$\mathscr{L}(E,\chi) = u \cdot \overline{\chi}(\mathfrak{a}(E)) \cdot \sqrt{\mathsf{BSD}(E/\mathbb{Q}^{\chi})/\mathsf{BSD}(E)},$$

where  $u \in \{\pm 1\}$  is such that

$$u \equiv \frac{\mathsf{BSD}(E) \cdot \prod_{\nu \mid \mathfrak{a}(\chi)} (-\#E(\mathbb{F}_{\nu}))}{\sqrt{\mathsf{BSD}(E/\mathbb{Q}^{\chi})/\mathsf{BSD}(E)}} \mod 3.$$



## Biases of algebraic L-values

Kisilevsky-Nam 2025 observed biases in the distribution of

$$\widetilde{\mathscr{L}}^+(E,\chi) := \frac{\mathsf{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_\ell)^+}(\mathscr{L}(E,\chi) \cdot (1+\overline{\chi}(\mathfrak{a}(E))))}{\mathsf{gcd}\left\{\mathsf{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_\ell)^+}(\mathscr{L}(E,\chi) \cdot (1+\overline{\chi}(\mathfrak{a}(E)))) : \chi \in \mathcal{X}_\ell^{< N}\right\}},$$

as  $\chi$  varies over the set  $\mathcal{X}_{\ell}^{< N}$  of primitive Dirichlet characters of  $\mathbb{Q}$  of odd prime order  $\ell \nmid \mathfrak{c}_0(E)$  and prime  $\mathfrak{a}(\chi) < N$  with  $N \to \infty$ .

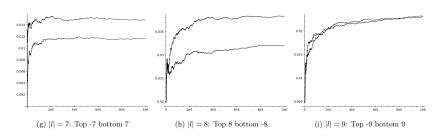


Figure 50. 11a1:  $(\alpha, \beta) = (1, 3)$  Ratio (7.11)  $x_{6,E}^{(\alpha,\beta)}(X;l)/X^{1/2}\log^2(X)$ 

# Predicting residual L-densities

This distribution can be quantified by computing the **residual L-density** of E modulo an odd prime  $\ell \nmid c_0(E)$  defined by

$$\mathfrak{d}_{E,\ell}(n) := \lim_{N \to \infty} \frac{\#\{\chi \in \mathcal{X}_{\ell}^{< N} : \mathscr{L}(E,\chi) \equiv n \mod (1 - \zeta_{\ell})\}}{\#\mathcal{X}_{\ell}^{< N}}.$$

Chebotarev's density theorem reduces this to computations in  $im(\rho_{E,\ell})$ .

## Theorem (Theorem 4.11 of thesis)

Let  $K=\mathbb{Q}$ . Assume that the BSD conjecture holds over  $\mathbb{Q}$ . If  $L(E,1)\neq 0$ , then  $\mathfrak{d}_{E,\ell}$  only depends on  $\mathrm{ord}_{\ell}(\mathsf{BSD}(E))$  and on  $\mathrm{im}(\overline{\rho}_{E,\ell^2})$ .

A similar argument recovers the distribution of Kisilevsky-Nam 2025.

# Theorem (Proposition 4.19 of thesis)

Let  $K = \mathbb{Q}$ . If E has Cremona label 11a1, 15a1, or 17a1, and  $\chi$  is cubic, then the distribution of  $\widetilde{\mathscr{L}}^+(E,\chi)$  can be predicted precisely.

# Bounding denominators of L-values

Lorenzini 2011 described the cancellations between tor(E) and Tam(E).

# Theorem (Proposition 4.5 of thesis)

Let  $K = \mathbb{Q}$ . If  $\ell \nmid 3 \cdot \mathfrak{c}_0(E)$  is an odd prime, then

$$\operatorname{ord}_{\ell}(\#\operatorname{tor}(E)) \leq \operatorname{ord}_{\ell}(\operatorname{Tam}(E)).$$

The  $\ell=3$  analogue can be deduced from the integrality of  $\mathcal{L}(E)$  and the classification of  $\mathrm{im}(\rho_{E,3})$  by Rouse–Sutherland–Zureick-Brown 2022.

# Theorem (Theorem 4.9 of thesis)

Let  $K=\mathbb{Q}$ . Assume that the BSD conjecture holds over  $\mathbb{Q}$ . If  $L(E,1)\neq 0$  and  $\ell \nmid \mathfrak{c}_0(E)$ , then

$$\operatorname{ord}_{\ell}(\mathscr{L}(E)) = \operatorname{ord}_{\ell}(\mathsf{BSD}(E)) \geq -1.$$

There is an ongoing project by Melistas and I for the  $K = \mathbb{F}_q(t)$  analogue.



# Computations of L-values

Much of the previous explorations were only possible thanks to efficient algorithms to compute  $\mathscr{L}(E,\chi)$  in computer algebra systems.

Algorithm (Dokchitser 2004)

Computes L(M,0) where M is a motive over a number field.

There are almost no public implementations for global function fields.

Algorithm (Comeau-Lapointe-David-Lalín-Li 2022)

Computes  $\mathcal{L}(E, \chi, T)$  where E and  $\chi$  are defined over  $\mathbb{F}_q(t)$ .

The proof of the Weil conjectures gives an algorithm for general  $\lambda$ -adic representations, which is used by Maistret and Wiersema in their project.

Algorithm (Algorithm 5.15 of thesis)

Computes  $\mathcal{L}(\rho, T)$  where  $\rho$  is an almost everywhere unramified  $\lambda$ -adic representation of  $\mathbb{F}_q(C)$  (that is pure of weight w and  $\rho^{\vee} \cong \rho^{\varsigma} \otimes \overline{\mathbb{Q}}(w)$ ).

# Computing formal L-functions

Let  $\rho$  be an almost everywhere unramified  $\lambda$ -adic representation of  $\mathbb{F}_q(C)$ .

# Theorem (Proposition 5.13 of thesis)

If  $ho^{G_{\overline{\mathbb{F}_q}(C)}}=0$ , then  $\mathcal{L}(
ho,T)$  is a polynomial of degree

$$d := \deg \mathfrak{a}(\rho) + (2g(C) - 2) \dim \rho,$$

where g(C) is the genus of C. Furthermore, if  $\rho$  is pure of weight w and  $\rho^{\vee} \cong \rho^{\varsigma} \otimes \overline{\mathbb{Q}}(w)$ , then the functional equation gives  $\epsilon(\rho) \in \mathbb{C}^{\times}$  such that

$$\mathcal{L}(\rho,T) = \epsilon(\rho) \cdot T^d \cdot \mathcal{L}(\rho,(q^{w+1}T)^{-1})^{\varsigma}.$$

In particular, if  $\{c_n\}_{n\in\mathbb{N}}$  denotes the coefficients of  $\mathcal{L}(\rho,T)$ , then

$$c_n = \begin{cases} 1 & \text{if } n = 1, \\ q^{(w+1)(n-d)} \cdot \epsilon(\rho) \cdot c_{d-n}^{\varsigma} & \text{if } 0 < n < d, \\ \epsilon(\rho) & \text{if } n = d, \\ 0 & \text{otherwise.} \end{cases}$$

# Computing twisted L-functions

There is a refinement of the algorithm for tensor products  $\rho\otimes\sigma.$ 

# Theorem (Theorem 2.7 of thesis)

Under the previous assumptions, if  $(\mathfrak{a}(\rho),\mathfrak{a}(\sigma))=1$ , then

$$\epsilon(\rho\otimes\sigma)=\frac{\epsilon(\rho)^{\dim\sigma}\cdot\epsilon(\sigma)^{\dim\rho}\cdot\det\sigma(\mathfrak{a}(\rho))\cdot\det\rho(\mathfrak{a}(\sigma))}{q^{(g(\mathcal{C})-1)\dim\rho\dim\sigma}}.$$

The remainder of the thesis provides explicit examples of  $\mathcal{L}(\rho \otimes \sigma, T)$  when  $\rho$  and  $\sigma$  arise from elliptic curves or Dirichlet characters.

In particular, the examples use an alternative implementation of Dirichlet characters of  $\mathbb{F}_q(t)$  that is more amenable to computation.

# Theorem (Theorem 6.6 of thesis)

Let  $K = \mathbb{F}_q(t)$ . Then there is a canonical representation of any  $u \in (\mathbb{F}_q[t]/m)^{\times}$  that allows for an efficient computation of  $\chi(u)$ .

