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1 Motivational background

Let E be an elliptic curve over Q. Associated to F is its Hasse—Weil L-function
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where Fr,, is an arithmetic Frobenius at a prime p, and pg 4 is the g-adic representation associated to the
g-adic Tate module of E for any prime ¢ # p. The algebraic and analytic properties of these L-functions are
studied extensively in the literature, and they are the subject of many problems in the arithmetic of elliptic
curves. Most notably, the Birch-Swinnerton-Dyer conjecture says that the order of vanishing r of L(E,s)
at s =1 is precisely the Mordell-Weil rank rk(F), and its leading term is given by
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where Q(FE) denotes the real period, Tam(FE) denotes the Tamagawa number, III(E) denotes the Tate—
Shafarevich group, Reg(E) denotes the elliptic regulator, and tor(E) denotes the torsion subgroup. As Tate
once said, this remarkable conjecture relates the behaviour of a function L(F, s) at a point where it is not at
present known to be defined, to the order of a group III(E) which is not known to be finite. Since then, the
modularity theorem of Taylor-Wiles shows that L(FE, s) admits analytic continuation to the entire complex
plane, and III(E) is now known to be finite for r < 1 thanks to the works of Gross—Zagier and Kolyvagin.
For the sake of convenience, call the left hand side the algebraic L-value of E, denoting it by Z(E), and call
the right hand side the Birch—Swinnerton-Dyer quotient of F, denoting it by BSD(E).

When FE is base changed to a finite Galois extension K of Q, analogous quantities L(E/K, s), rk(E/K),
WNE/K), Tam(E/K), II(E/K), Reg(E/K), and tor(E/K) can be defined to formulate a generalisation of
the conjecture over K. However, the modularity theorem has yet to be extended to elliptic curves beyond
specific number fields, so the conjectural equality remains ill-defined in general. On the other hand, Artin’s
formalism for L-functions says that L(E/K,s) decomposes into a product of twisted L-functions

L(E, p,s) = H !

bdet(1—p= - Fr, b | (p), @ p¥)P)

over all irreducible Artin representations p that factor through K, so the behaviour of L(E/K, s) is completely
governed by L(E, p, s). These twisted L-functions can in turn be analytically continued to the entire complex
plane by expressing them as Rankin—Selberg convolutions of L(E, s), so the validity of the conjecture can be
asked at the level of twisted L-functions. For instance, the Deligne-Gross conjecture states that the order
of vanishing of L(E, p, s) at s = 1 is precisely the multiplicity of p in the Artin representation associated to
E(K). Analogous to the classical leading term conjecture that Z(F) = BSD(FE), the twisted leading term
conjecture would be a statement about a twisted algebraic L-value Z(F, p) of E. For the sake of simplicity,
when K is a cyclotomic extension of Q, the corresponding twisted algebraic L-value is given by
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where 7(x) is the Gauss sum of the primitive Dirichlet character x associated to K. When E is semistable T'o-
optimal of conductor N and y has prime conductor p{ N and order ¢ > 1, it is known that Z(E, x) € Z[(,].




2 Known results

Unfortunately, there seems to be a barrier to formulating a twisted leading term conjecture for Z(E, x),
even assuming classical leading term conjectures over general number fields. Dokchitser—-Evans—Wiersema
gave many explicit pairs of examples of elliptic curves FE; and Es over Q, with Z(FE1,x) # Z(F»,x) for
some fixed Dirichlet character x, but are arithmetically identical over the number field K cut out by x.

Example (DEW21, Example 45). Let Ey and Es be the elliptic curves given by the Cremona labels 1356d1
and 1356f1 respectively, and let x be the cubic character of conductor 7 such that x(3) = (3. Then BSD(E;) =
BSD(E;/K) =1 fori=1,2, but £(E1,x) = (3 and £ (Ea,x) = —(3.

This phenomenon can be partially explained with the assumption of standard arithmetic conjectures. For
instance, under Stevens’s Manin constant conjecture and the leading term conjectures over Q and over K,
Dokchitser—Evans—Wiersema expressed the norm of Z(E, x) in terms of Birch-Swinnerton-Dyer quotients.

Theorem (DEW21, Theorem 38). Let E be a semistable T'g-optimal elliptic curve over Q of conductor N, let
X be a primitive Dirichlet character of odd prime conductor p{ N and odd prime order ¢ { BSD(E)#E(F,),
and let ¢ := x(N) @~ 1/2 Then Z(E,x)-¢ € Z[(,]*, and has norm
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In particular, if BSD(E) = BSD(E/K), then there is a unit u € Z[(,)" such that L (E,x) =u-( 1.

In the relevant case of BSD(E) = BSD(E/K), this predicts the ideal of Q(¢,)" generated by .Z(E, x), but
not the precise value of Z(E, x). Note that in general, the exact prime ideal factorisation of Z(F, x) can be
recovered from the Gal(K/Q)-module structure of III(E/K) under stronger Iwasawa-theoretic assumptions.

From a purely analytic perspective, a natural problem is to determine the asymptotic distribution of
Z(E,x) as x varies over primitive Dirichlet characters of some fixed prime order g but arbitrarily high
prime conductor p t N, for some fixed elliptic curve E of conductor N. However, for each such p, there are
g — 1 primitive Dirichlet characters y of conductor p and order ¢, giving rise to ¢ — 1 conjugates of Z(F, x),
so a uniform choice of x for each p has to be made for any meaningful analysis. One solution is to observe
that the residue class of .Z(E, x) modulo (1 — ¢,) is independent of the choice of x, so a simpler problem
would be to determine the asymptotic distribution of these residue classes instead. Let XEZ be the set of
equivalence classes of primitive Dirichlet characters of odd order ¢ and odd prime conductor p t N less than
n, where two primitive Dirichlet characters in X;Z are equivalent if they have the same conductor. Define
the residual densities 0 4 of Z(E, x) to be the natural densities of Z(E, x) modulo (1 — (,), namely
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if such a limit exists. Fixing six elliptic curves F and five small orders ¢, Kisilevsky—Nam numerically
computed dg 4 by varying x over millions of conductors p, and observed inherent biases.

Example (KN22, Section 7). Let E be the elliptic curve given by the Cremona label 11al. Then

ops3(0) =g,  des(l)=g§,  dps(2) =i
Note that their actual computational results seemingly give
6p,3(0) ~ 2, 6p3(1) ~ 22, 08.3(2) ~ 51,

but this is simply due to a difference in normalisation. Instead of considering the residual density of Z(E, x),
they computed that of the norms of £ (F, X)/ gedg 4, where

ZLT(E,x) = {f(E,X)'(l‘F(N)) if X(N) # 1,

and gedp , is the greatest common divisor of these norms as y varies, which is determined empirically.



3 New results

I refined the result of Dokchitser—Evans—Wiersema by predicting the precise value of Z(FE, x) in terms of an
abstract generator of the ideal of Q({,)" generated by .-Z(E, x). When x is cubic, this can be made explicit.

Theorem (Ang24, Corollary 5.2). Let E be a semistable T'g-optimal elliptic curve over Q of conductor N,
and let x be a cubic primitive Dirichlet character of odd prime conductor p{ N such that 31 BSD(E)#E(F,).
Then

BSD(E/K
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for some sign u = +1, chosen such that
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This clarifies the original example given by Dokchitser—-Evans—Wiersema, as well as all of their other
cubic examples, in the sense that £ (En, x) # -Z(Es, x) precisely because #E1(F,) # #E»(F,) mod 3.

Example (Ang24, Example 5.3). Let E1 and Es be the elliptic curves given by the Cremona labels 1356d1
and 1356f1 respectively, and let x be the cubic character of conductor 7 such that x(3) = (3. Then £ (E;,x) =
w-C3 foru=—#E;(F7) mod 3 fori=1,2, and indeed #E1(F7) = 11 and #FE5(F7) = 1.

When x has order ¢ > 3, the same proof only yields a congruence on the unit u € Z[{,]" modulo
¢, since the group of units of Z[(,]* is infinite. This does clarify all of the quintic examples given by
Dokchitser-Evans—Wiersema with BSD(E) = BSD(E/K), in the sense that .Z(F1, x) # -Z(Ea, x) precisely

because #E1(F,) # #E>(F,) mod 5. Unfortunately, enforcing the congruence on #E(F,) modulo ¢ remains
insufficient to determine the precise value of Z(FE, x), as the following rare example shows.

Example (Ang24, Remark 5.7). Let E; and Es be the the elliptic curves given by the Cremona labels
544b1 and 5441 respectively, and let x be the quintic character of conductor 11 such that x(2) = (5. Then
BSD(E;) = BSD(E;/K) =1, but £ (E1,x) = —C2 — (5 and £ (Ea,x) = —2¢3 — 3¢2 — 2(5.

I also classified the possible residual densities of Z(FE, x) in terms of the mod-¢™ representations pg gm.

Theorem (Ang24, Proposition 6.1). Let E be a semistable Ty-optimal elliptic curve over Q such that
L(E,1) # 0, and let ¢ be an odd prime. If ordg(BSD(E)) > 0, then 65 4(0) = 1 and g q(\) = 0 for any
A€ Fy. Otherwise, for any A € Fy,

_ #{M e Gpgn :1+det(M) —tr(M)=—-ABSD(E)"" mod ¢™}
#GE,qm ’

where m :=1—ordy(BSD(E)) and Gg ¢gn = {M € impg 4m : det(M) =1 mod g}, and furthermore if pg 4
is surjective, then for any A € Fy,

6E,q(/\)
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When yx is cubic, this can be made very explicit.

Theorem (Ang24, Theorem 6.4). Let E be a semistable T'g-optimal elliptic curve over Q such that L(E, 1) #
0. Then there is an explicit algorithm to determine the ordered triple (0g 3(0),0p 3(1),0r,3(2)) in terms of
only BSD(E) and impgg. In particular, they can only be one of

(1,0,0), (3.3, %), G 1.8) (3:3:0), (3,0,3), (85 %)
(%7%7%)7 (i?%?i)7 (i?i?%)7 (87%7%)7 (%7%70)7 %707 %)'

This algorithm is in the form of two tables and will be omitted for brevity, but ultimately does recover
the predicted residual densities in the six examples of Kisilevsky—Nam.



4 Proof ingredients

The proofs of all of these results crucially rely on the following fundamental congruence.

Theorem (Ang24, Corollary 3.7). Let E be a semistable T'g-optimal elliptic curve of conductor N, and let
X be a primitive Dirichlet character of odd prime conductor pt N and order ¢ > 1. Then

ZL(E,x)=-Z(E)#EF,) mod (1-¢,).
This is a consequence of writing L(E,1) and L(E, x, 1) as sums of modular symbols

1e(q) = /Oq 2mif(z)dz,

where f is the normalised cuspidal eigenform associated to F by the modularity theorem. Specifically, the
Hecke action on the space of modular symbols and a modification of Birch’s formula respectively give

LB HEE) = Y pe(®), LExD) =" S s (2).

By Manin’s formalism for modular symbols, it turns out that pug(q)+pe(1—g) is an integer multiple of Q(FE)
for any ¢ € Q, so the modular symbols in both expressions can be paired up and normalised accordingly to
give an expression for —Z(E)#E(F,) in Z and an expression for .Z(E, x) in Z[(,]. The congruence then

follows immediately by comparing both integral expressions, noting that x(a) =1 mod (1 — ().

This essentially proves the algebraic result, while the analytic results require more work. As the conductor
p of x varies over odd primes congruent to 1 modulo the order g of x, the congruence says that Z(F, x)
varies according to #E(F,) = 1+ det(pg ¢(Frp)) — tr(pg,q(Frp)) modulo g. On the other hand, pg (Fr,)
varies over Gg g0 1= {M € impg 4 : det(M) =1 mod ¢}, but Chebotarev’s density theorem says that this
is asymptotically uniformly distributed. It turns out that it suffices to compute densities in the finite group
G g rather than the infinite group Gg ¢, and m is bounded above by the following general result.

Theorem (Ang24, Theorem 4.4). Let E be a semistable I'g-optimal elliptic curve over Q such that L(E, 1) #
0, and let ¢ be an odd prime. Then ord,(Z(E)) > —1 assuming the Birch-Swinnerton-Dyer conjecture. If
E has no rational g-isogeny, then ord,(-Z(E)) > 0 unconditionally.

The proof of this turned out to be quite subtle, involving many cases using a multitude of recent results.
Mazur’s torsion theorem first reduces this to a finite number of cases depending on tor(FE), and all of
which can be dealt with by Lorenzini’s theorem on cancellations between torsion and Tamagawa numbers
[Lorll, Proposition 1.1], except for when ¢ = 3 and tor(E) & Z/3Z. The proof of this last case follows
from an application of Tate’s algorithm, the aforementioned integrality of .Z(E)#E(F,), and a case-by-case
analysis on the possible mod-3 and 3-adic Galois images of E classified by Rouse—Sutherland—Zureick-Brown
[RSZB22, Corollary 1.3.1 and Corollary 12.3.3]. The analytic results can then be derived by computing the
densities of pg 3(Fr,) in all possible finite groups G 3 and Gg g given by the same classification.

Finally, note that all hypotheses that F is semistable I'p-optimal can be weakened by considering Manin
constants, which is possible thanks to Cesnavicius’s theorem on Manin constants [Cesl8, Theorem 1.2].
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