

L-values of elliptic curves twisted by cubic characters

David Kurniadi Angdinata

Wednesday, 24 April 2024

1 Motivational background

Let E be an elliptic curve over \mathbb{Q} . Associated to E is its Hasse–Weil L-function

$$L(E, s) := \prod_p \frac{1}{\det(1 - p^{-s} \cdot \text{Fr}_p^{-1} | (\rho_{E,q}^\vee)^p)},$$

where Fr_p is an arithmetic Frobenius at a prime p , and $\rho_{E,q}$ is the q -adic representation associated to the q -adic Tate module of E for any prime $q \neq p$. The algebraic and analytic properties of these L-functions are studied extensively in the literature, and they are the subject of many problems in the arithmetic of elliptic curves. Most notably, the Birch–Swinnerton-Dyer conjecture says that the order of vanishing r of $L(E, s)$ at $s = 1$ is precisely the Mordell–Weil rank $\text{rk}(E)$, and its leading term is given by

$$\lim_{s \rightarrow 1} \frac{L(E, s)}{(s-1)^r} \cdot \frac{1}{\Omega(E)} = \frac{\text{Tam}(E) \cdot \# \text{III}(E) \cdot \text{Reg}(E)}{\#\text{tor}(E)^2},$$

where $\Omega(E)$ denotes the real period, $\text{Tam}(E)$ denotes the Tamagawa number, $\text{III}(E)$ denotes the Tate–Shafarevich group, $\text{Reg}(E)$ denotes the elliptic regulator, and $\text{tor}(E)$ denotes the torsion subgroup. As Tate once said, this remarkable conjecture relates the behaviour of a function $L(E, s)$ at a point where it is not at present known to be defined, to the order of a group $\text{III}(E)$ which is not known to be finite. Since then, the modularity theorem of Taylor–Wiles shows that $L(E, s)$ admits analytic continuation to the entire complex plane, and $\text{III}(E)$ is now known to be finite for $r \leq 1$ thanks to the works of Gross–Zagier and Kolyvagin. For the sake of convenience, call the left hand side the algebraic L-value of E , denoting it by $\mathcal{L}(E)$, and call the right hand side the Birch–Swinnerton-Dyer quotient of E , denoting it by $\text{BSD}(E)$.

When E is base changed to a finite Galois extension K of \mathbb{Q} , analogous quantities $L(E/K, s)$, $\text{rk}(E/K)$, $\Omega(E/K)$, $\text{Tam}(E/K)$, $\text{III}(E/K)$, $\text{Reg}(E/K)$, and $\text{tor}(E/K)$ can be defined to formulate a generalisation of the conjecture over K . However, the modularity theorem has yet to be extended to elliptic curves beyond specific number fields, so the conjectural equality remains ill-defined in general. On the other hand, Artin’s formalism for L-functions says that $L(E/K, s)$ decomposes into a product of twisted L-functions

$$L(E, \rho, s) := \prod_p \frac{1}{\det(1 - p^{-s} \cdot \text{Fr}_p^{-1} | (\rho_{E,q}^\vee \otimes \rho^\vee)^p)},$$

over all irreducible Artin representations ρ that factor through K , so the behaviour of $L(E/K, s)$ is completely governed by $L(E, \rho, s)$. These twisted L-functions can in turn be analytically continued to the entire complex plane by expressing them as Rankin–Selberg convolutions of $L(E, s)$, so the validity of the conjecture can be asked at the level of twisted L-functions. For instance, the Deligne–Gross conjecture states that the order of vanishing of $L(E, \rho, s)$ at $s = 1$ is precisely the multiplicity of ρ in the Artin representation associated to $E(K)$. Analogous to the classical leading term conjecture that $\mathcal{L}(E) = \text{BSD}(E)$, the twisted leading term conjecture would be a statement about a twisted algebraic L-value $\mathcal{L}(E, \rho)$ of E . For the sake of simplicity, when K is a cyclotomic extension of \mathbb{Q} , the corresponding twisted algebraic L-value is given by

$$\mathcal{L}(E, \chi) := \lim_{s \rightarrow 1} \frac{L(E, \chi, s)}{(s-1)^r} \cdot \frac{p}{\tau(\chi) \Omega(E)},$$

where $\tau(\chi)$ is the Gauss sum of the primitive Dirichlet character χ associated to K . When E is semistable Γ_0 -optimal of conductor N and χ has prime conductor $p \nmid N$ and order $q > 1$, it is known that $\mathcal{L}(E, \chi) \in \mathbb{Z}[\zeta_q]$.

2 Known results

Unfortunately, there seems to be a barrier to formulating a twisted leading term conjecture for $\mathcal{L}(E, \chi)$, even assuming classical leading term conjectures over general number fields. Dokchitser–Evans–Wiersema gave many explicit pairs of examples of elliptic curves E_1 and E_2 over \mathbb{Q} , with $\mathcal{L}(E_1, \chi) \neq \mathcal{L}(E_2, \chi)$ for some fixed Dirichlet character χ , but are arithmetically identical over the number field K cut out by χ .

Example (DEW21, Example 45). *Let E_1 and E_2 be the elliptic curves given by the Cremona labels 1356d1 and 1356f1 respectively, and let χ be the cubic character of conductor 7 such that $\chi(3) = \zeta_3^2$. Then $\text{BSD}(E_i) = \text{BSD}(E_i/K) = 1$ for $i = 1, 2$, but $\mathcal{L}(E_1, \chi) = \zeta_3^2$ and $\mathcal{L}(E_2, \chi) = -\zeta_3^2$.*

This phenomenon can be partially explained with the assumption of standard arithmetic conjectures. For instance, under Stevens's Manin constant conjecture and the leading term conjectures over \mathbb{Q} and over K , Dokchitser–Evans–Wiersema expressed the norm of $\mathcal{L}(E, \chi)$ in terms of Birch–Swinnerton-Dyer quotients.

Theorem (DEW21, Theorem 38). *Let E be a semistable Γ_0 -optimal elliptic curve over \mathbb{Q} of conductor N , let χ be a primitive Dirichlet character of odd prime conductor $p \nmid N$ and odd prime order $q \nmid \text{BSD}(E) \# E(\mathbb{F}_p)$, and let $\zeta := \chi(N)^{(q-1)/2}$. Then $\mathcal{L}(E, \chi) \cdot \zeta \in \mathbb{Z}[\zeta_q]^+$, and has norm*

$$\text{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_q)^+}(\mathcal{L}(E, \chi) \cdot \zeta) = \sqrt{\frac{\text{BSD}(E/K)}{\text{BSD}(E)}}.$$

In particular, if $\text{BSD}(E) = \text{BSD}(E/K)$, then there is a unit $u \in \mathbb{Z}[\zeta_q]^+$ such that $\mathcal{L}(E, \chi) = u \cdot \zeta^{-1}$.

In the relevant case of $\text{BSD}(E) = \text{BSD}(E/K)$, this predicts the ideal of $\mathbb{Q}(\zeta_q)^+$ generated by $\mathcal{L}(E, \chi)$, but not the precise value of $\mathcal{L}(E, \chi)$. Note that in general, the exact prime ideal factorisation of $\mathcal{L}(E, \chi)$ can be recovered from the $\text{Gal}(K/\mathbb{Q})$ -module structure of $\text{III}(E/K)$ under stronger Iwasawa-theoretic assumptions.

From a purely analytic perspective, a natural problem is to determine the asymptotic distribution of $\mathcal{L}(E, \chi)$ as χ varies over primitive Dirichlet characters of some fixed prime order q but arbitrarily high prime conductor $p \nmid N$, for some fixed elliptic curve E of conductor N . However, for each such p , there are $q-1$ primitive Dirichlet characters χ of conductor p and order q , giving rise to $q-1$ conjugates of $\mathcal{L}(E, \chi)$, so a uniform choice of χ for each p has to be made for any meaningful analysis. One solution is to observe that the residue class of $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$ is independent of the choice of χ , so a simpler problem would be to determine the asymptotic distribution of these residue classes instead. Let $X_{E,q}^{<n}$ be the set of equivalence classes of primitive Dirichlet characters of odd order q and odd prime conductor $p \nmid N$ less than n , where two primitive Dirichlet characters in $X_{E,q}^{<n}$ are equivalent if they have the same conductor. Define the residual densities $\delta_{E,q}$ of $\mathcal{L}(E, \chi)$ to be the natural densities of $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$, namely

$$\delta_{E,q}(\lambda) := \lim_{n \rightarrow \infty} \frac{\#\{\chi \in X_{E,q}^{<n} : \mathcal{L}(E, \chi) \equiv \lambda \pmod{1 - \zeta_q}\}}{\#X_{E,q}^{<n}}, \quad \lambda \in \mathbb{F}_q,$$

if such a limit exists. Fixing six elliptic curves E and five small orders q , Kisilevsky–Nam numerically computed $\delta_{E,q}$ by varying χ over millions of conductors p , and observed inherent biases.

Example (KN22, Section 7). *Let E be the elliptic curve given by the Cremona label 11a1. Then*

$$\delta_{E,3}(0) \approx \frac{3}{8}, \quad \delta_{E,3}(1) \approx \frac{3}{8}, \quad \delta_{E,3}(2) \approx \frac{1}{4}.$$

Note that their actual computational results seemingly give

$$\delta_{E,3}(0) \approx \frac{9}{24}, \quad \delta_{E,3}(1) \approx \frac{15}{24}, \quad \delta_{E,3}(2) \approx \frac{1}{24},$$

but this is simply due to a difference in normalisation. Instead of considering the residual density of $\mathcal{L}(E, \chi)$, they computed that of the norms of $\mathcal{L}^+(E, \chi) / \text{gcd}_{E,q}$, where

$$\mathcal{L}^+(E, \chi) := \begin{cases} \mathcal{L}(E, \chi) & \text{if } \chi(N) = 1, \\ \mathcal{L}(E, \chi) \cdot (1 + \overline{\chi(N)}) & \text{if } \chi(N) \neq 1, \end{cases}$$

and $\text{gcd}_{E,q}$ is the greatest common divisor of these norms as χ varies, which is determined empirically.

3 New results

I refined the result of Dokchitser–Evans–Wiersema by predicting the precise value of $\mathcal{L}(E, \chi)$ in terms of an abstract generator of the ideal of $\mathbb{Q}(\zeta_q)^+$ generated by $\mathcal{L}(E, \chi)$. When χ is cubic, this can be made explicit.

Theorem (Ang24, Corollary 5.2). *Let E be a semistable Γ_0 -optimal elliptic curve over \mathbb{Q} of conductor N , and let χ be a cubic primitive Dirichlet character of odd prime conductor $p \nmid N$ such that $3 \nmid \text{BSD}(E) \# E(\mathbb{F}_p)$. Then*

$$\mathcal{L}(E, \chi) = u \cdot \overline{\chi(N)} \sqrt{\frac{\text{BSD}(E/K)}{\text{BSD}(E)}},$$

for some sign $u = \pm 1$, chosen such that

$$u \equiv -\#E(\mathbb{F}_p) \sqrt{\frac{\text{BSD}(E)^3}{\text{BSD}(E/K)}} \pmod{3}.$$

This clarifies the original example given by Dokchitser–Evans–Wiersema, as well as all of their other cubic examples, in the sense that $\mathcal{L}(E_1, \chi) \neq \mathcal{L}(E_2, \chi)$ precisely because $\#E_1(\mathbb{F}_p) \not\equiv \#E_2(\mathbb{F}_p) \pmod{3}$.

Example (Ang24, Example 5.3). *Let E_1 and E_2 be the elliptic curves given by the Cremona labels 1356d1 and 1356f1 respectively, and let χ be the cubic character of conductor 7 such that $\chi(3) = \zeta_3^2$. Then $\mathcal{L}(E_i, \chi) = u \cdot \zeta_3^2$ for $u \equiv -\#E_i(\mathbb{F}_7) \pmod{3}$ for $i = 1, 2$, and indeed $\#E_1(\mathbb{F}_7) = 11$ and $\#E_2(\mathbb{F}_7) = 7$.*

When χ has order $q > 3$, the same proof only yields a congruence on the unit $u \in \mathbb{Z}[\zeta_q]^+$ modulo q , since the group of units of $\mathbb{Z}[\zeta_q]^+$ is infinite. This does clarify all of the quintic examples given by Dokchitser–Evans–Wiersema with $\text{BSD}(E) = \text{BSD}(E/K)$, in the sense that $\mathcal{L}(E_1, \chi) \neq \mathcal{L}(E_2, \chi)$ precisely because $\#E_1(\mathbb{F}_p) \not\equiv \#E_2(\mathbb{F}_p) \pmod{5}$. Unfortunately, enforcing the congruence on $\#E(\mathbb{F}_p)$ modulo q remains insufficient to determine the precise value of $\mathcal{L}(E, \chi)$, as the following rare example shows.

Example (Ang24, Remark 5.7). *Let E_1 and E_2 be the elliptic curves given by the Cremona labels 544b1 and 544f1 respectively, and let χ be the quintic character of conductor 11 such that $\chi(2) = \zeta_5$. Then $\text{BSD}(E_i) = \text{BSD}(E_i/K) = 1$, but $\mathcal{L}(E_1, \chi) = -\zeta_5^3 - \zeta_5$ and $\mathcal{L}(E_2, \chi) = -2\zeta_5^3 - 3\zeta_5^2 - 2\zeta_5$.*

I also classified the possible residual densities of $\mathcal{L}(E, \chi)$ in terms of the mod- q^m representations $\overline{\rho_{E, q^m}}$.

Theorem (Ang24, Proposition 6.1). *Let E be a semistable Γ_0 -optimal elliptic curve over \mathbb{Q} such that $L(E, 1) \neq 0$, and let q be an odd prime. If $\text{ord}_q(\text{BSD}(E)) > 0$, then $\delta_{E, q}(0) = 1$ and $\delta_{E, q}(\lambda) = 0$ for any $\lambda \in \mathbb{F}_q^\times$. Otherwise, for any $\lambda \in \mathbb{F}_q$,*

$$\delta_{E, q}(\lambda) = \frac{\#\{M \in G_{E, q^m} : 1 + \det(M) - \text{tr}(M) \equiv -\lambda \text{BSD}(E)^{-1} \pmod{q^m}\}}{\#G_{E, q^m}},$$

where $m := 1 - \text{ord}_q(\text{BSD}(E))$ and $G_{E, q^m} := \{M \in \text{im } \overline{\rho_{E, q^m}} : \det(M) \equiv 1 \pmod{q}\}$, and furthermore if $\overline{\rho_{E, q}}$ is surjective, then for any $\lambda \in \mathbb{F}_q$,

$$\delta_{E, q}(\lambda) = \begin{cases} \frac{1}{q-1} & \text{if } \lambda_{E, q} = 1, \\ \frac{q}{q^2-1} & \text{if } \lambda_{E, q} = 0, \\ \frac{1}{q+1} & \text{if } \lambda_{E, q} = -1, \end{cases} \quad \lambda_{E, q} := \left(\frac{\lambda \text{BSD}(E)^{-1}}{q} \right) \left(\frac{\lambda \text{BSD}(E)^{-1} + 4}{q} \right).$$

When χ is cubic, this can be made very explicit.

Theorem (Ang24, Theorem 6.4). *Let E be a semistable Γ_0 -optimal elliptic curve over \mathbb{Q} such that $L(E, 1) \neq 0$. Then there is an explicit algorithm to determine the ordered triple $(\delta_{E, 3}(0), \delta_{E, 3}(1), \delta_{E, 3}(2))$ in terms of only $\text{BSD}(E)$ and $\text{im } \overline{\rho_{E, 9}}$. In particular, they can only be one of*

$$(1, 0, 0), (\frac{3}{8}, \frac{3}{8}, \frac{1}{4}), (\frac{3}{8}, \frac{1}{4}, \frac{3}{8}), (\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{8}, \frac{3}{4}, \frac{1}{8}), \\ (\frac{1}{8}, \frac{1}{8}, \frac{3}{4}), (\frac{1}{4}, \frac{1}{2}, \frac{1}{4}), (\frac{1}{4}, \frac{1}{4}, \frac{1}{2}), (\frac{5}{9}, \frac{2}{9}, \frac{2}{9}), (\frac{1}{3}, \frac{2}{3}, 0), (\frac{1}{3}, 0, \frac{2}{3}).$$

This algorithm is in the form of two tables and will be omitted for brevity, but ultimately does recover the predicted residual densities in the six examples of Kisilevsky–Nam.

4 Proof ingredients

The proofs of all of these results crucially rely on the following fundamental congruence.

Theorem (Ang24, Corollary 3.7). *Let E be a semistable Γ_0 -optimal elliptic curve of conductor N , and let χ be a primitive Dirichlet character of odd prime conductor $p \nmid N$ and order $q > 1$. Then*

$$\mathcal{L}(E, \chi) \equiv -\mathcal{L}(E) \#E(\mathbb{F}_p) \pmod{1 - \zeta_q}.$$

This is a consequence of writing $L(E, 1)$ and $L(E, \chi, 1)$ as sums of modular symbols

$$\mu_E(q) := \int_0^q 2\pi i f(z) dz,$$

where f is the normalised cuspidal eigenform associated to E by the modularity theorem. Specifically, the Hecke action on the space of modular symbols and a modification of Birch's formula respectively give

$$-L(E, 1) \#E(\mathbb{F}_p) = \sum_{a=1}^{p-1} \mu_E\left(\frac{a}{p}\right), \quad L(E, \chi, 1) = \frac{\tau(\chi)}{n} \sum_{a=1}^{p-1} \overline{\chi(a)} \mu_E\left(\frac{a}{p}\right).$$

By Manin's formalism for modular symbols, it turns out that $\mu_E(q) + \mu_E(1-q)$ is an integer multiple of $\Omega(E)$ for any $q \in \mathbb{Q}$, so the modular symbols in both expressions can be paired up and normalised accordingly to give an expression for $-\mathcal{L}(E) \#E(\mathbb{F}_p)$ in \mathbb{Z} and an expression for $\mathcal{L}(E, \chi)$ in $\mathbb{Z}[\zeta_q]$. The congruence then follows immediately by comparing both integral expressions, noting that $\chi(a) \equiv 1 \pmod{1 - \zeta_q}$.

This essentially proves the algebraic result, while the analytic results require more work. As the conductor p of χ varies over odd primes congruent to 1 modulo the order q of χ , the congruence says that $\mathcal{L}(E, \chi)$ varies according to $\#E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\text{Fr}_p)) - \text{tr}(\rho_{E,q}(\text{Fr}_p))$ modulo q . On the other hand, $\rho_{E,q}(\text{Fr}_p)$ varies over $G_{E,q^\infty} := \{M \in \text{im } \rho_{E,q} : \det(M) \equiv 1 \pmod{q}\}$, but Chebotarev's density theorem says that this is asymptotically uniformly distributed. It turns out that it suffices to compute densities in the finite group G_{E,q^m} rather than the infinite group G_{E,q^∞} , and m is bounded above by the following general result.

Theorem (Ang24, Theorem 4.4). *Let E be a semistable Γ_0 -optimal elliptic curve over \mathbb{Q} such that $L(E, 1) \neq 0$, and let q be an odd prime. Then $\text{ord}_q(\mathcal{L}(E)) \geq -1$ assuming the Birch–Swinnerton-Dyer conjecture. If E has no rational q -isogeny, then $\text{ord}_q(\mathcal{L}(E)) \geq 0$ unconditionally.*

The proof of this turned out to be quite subtle, involving many cases using a multitude of recent results. Mazur's torsion theorem first reduces this to a finite number of cases depending on $\text{tor}(E)$, and all of which can be dealt with by Lorenzini's theorem on cancellations between torsion and Tamagawa numbers [Lor11, Proposition 1.1], except for when $q = 3$ and $\text{tor}(E) \cong \mathbb{Z}/3\mathbb{Z}$. The proof of this last case follows from an application of Tate's algorithm, the aforementioned integrality of $\mathcal{L}(E) \#E(\mathbb{F}_p)$, and a case-by-case analysis on the possible mod-3 and 3-adic Galois images of E classified by Rouse–Sutherland–Zureick-Brown [RSZB22, Corollary 1.3.1 and Corollary 12.3.3]. The analytic results can then be derived by computing the densities of $\rho_{E,3}(\text{Fr}_p)$ in all possible finite groups $G_{E,3}$ and $G_{E,9}$ given by the same classification.

Finally, note that all hypotheses that E is semistable Γ_0 -optimal can be weakened by considering Manin constants, which is possible thanks to Česnavičius's theorem on Manin constants [Ces18, Theorem 1.2].

References

Ang24 D Angdinata (2024) L-values of elliptic curves twisted by cubic characters

Ces18 K Česnavičius (2018) The Manin constant in the semistable case

DEW21 V Dokchitser, R Evans, and H Wiersema (2021) On a BSD-type formula for L-values of Artin twists of elliptic curves

KN22 H Kisilevsky and J Nam (2022) Small algebraic central values of twists of elliptic L-functions

Lor11 D Lorenzini (2011) Torsion and Tamagawa numbers

RSZB22 J Rouse, A Sutherland, and D Zureick-Brown (2022) ℓ -adic images of Galois for elliptic curves over \mathbb{Q}