
An introduction to pairing-based elliptic curve cryptography

David Kurniadi Angdinata

Friday, 13 September 2019

1 Introduction

Cryptography is the study of computational techniques to allow for secure communication of information
across public platforms in the presence of third party eavesdroppers. Historically, this is based on the
unidirectional computational intractability of classical mathematical problems, such as integer factorisation
and discrete logarithms. For example, while the multiplication of two large integers are relatively easy on
a modern computer, decomposing a huge integer into its constituents is significantly more difficult. This
complexity problem is the basis of conventional Rivest–Shamir–Adleman (RSA) encryption schemes.

However, as computers become increasingly powerful, many of these conventional schemes become less
secure by being more vulnerable from external attacks. As a result, many cryptosystems require huge key
sizes, which in turn enforce huge storage and transmission requirements. The advent of elliptic curve cryp-
tography (ECC) resolves this predicament by allowing for significantly reduced key sizes, while maintaining
an equivalent measure of security, albeit with slightly more theory required for its implementations. For
instance, it is estimated that a key size of 4096 bits in RSA is equivalent to 300 bits in ECC.

While there are certainly a myriad of powerful cryptosystems in ECC, a relatively modern approach known
as pairing-based cryptography (PBC) forms the backbone of several important cryptographic protocols, some
of which allow for multi-party key agreements. The mathematical theory of PBC naturally extends from
that of conventional ECC, but relies on several hardness assumptions that differ from the classical discrete
logarithm problem used in ECC, which is older and more understood by cryptanalysts. As such, PBC has
gained wide attention in cryptology for its versatility and security.

These notes will serve as a brief introduction into the mathematical ideas involved in the engineering of
ECC, in the flavour of PBC, as well as some of the difficulties encountered and optimisations considered in
the implementation process. Unless otherwise specified, all ideas have been developed under the powerful
type system of Haskell across several polymorphic libraries.

The general pairing-based ECC stack is built upon several layers of mathematical abstraction. In as-
cending order of complexity, these layers can be summarised as follows.

� Galois field arithmetic. In this layer, the basic operations in arithmetic are defined for a particular
finite system of numbers that have primality-related properties.

� Elliptic curve operations. In this layer, the definition of an elliptic curve is given in terms of a Galois
field, and several operations acting on its points are recorded in a series of compact formulae.

� Bilinear pairing algorithms. In this layer, curve points are paired up with each other in accordance to
specialised algorithms, producing another point on the curve satisfying certain properties.

These layers will be described in further detail over the following sections. Note that, at the lowest layer,
Galois field arithmetic would be compiled into machine code, where further low-level optimisations can be
made. In contrast, at the highest layer, pairings are merely primitives in various cryptographic protocols,
which will in turn be used in concrete applications. These will not be touched upon in the upcoming sections.

1



2 Galois field arithmetic

Before defining a Galois field, the definition of an abelian group will make things much simpler.

Definition. An group is a set G with an operation + : G×G → G such that

� (identity) there exists a unique 0 in G such that for all a in G, we have 0 + a = a+ 0 = a,

� (inverses) for all a in G, there exists a unique −a in G such that a+ (−a) = (−a) + a = 0, and

� (associativity) for all a, b, and c in G, we have (a+ b) + c = a+ (b+ c).

Moreover, G is abelian if for all a and b in G, we have a+ b = b+ a (commutativity).

For example, the set of integers with the usual addition is an abelian group, but the set of natural
numbers with the usual addition is not an abelian group since there are never any inverses that are positive.
With this in mind, the definition of a Galois field can be given succinctly.

Definition. A field is a set K with operations + : G×G → G and · : G×G → G such that

� K with + is an abelian group,

� K minus 0 with · is an abelian group, and

� (distributivity) for all a, b, and c in K, we have a · (b+ c) = a · b+ a · c.
Moreover, K is Galois if K is finite.

For example, the set of real numbers with the usual addition and multiplication is a field, albeit not
Galois. An important result in Galois theory characterises all possible Galois fields.

Theorem. A Galois field is defined inductively as follows.

� For any prime number p, there exists a unique prime field Fp, a Galois field with p elements. Its
elements are typically represented by the integers from 0 to p − 1, and its + and · are addition and
multiplication of integers modulo p respectively. For example, F2 is a prime field containing the integers
0 and 1, and its operations are tabulated as follows.

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

� For any prime field Fp and any natural number n, there exists an extension field Fpn , a Galois field
with pn integer elements, defined over a polynomial f(X) and extended from Fp. Its elements are
typically represented as polynomials of degree less than n with coefficients in Fp, and its + and · are
addition and multiplication of polynomials modulo f(X). For example, F4 defined over the polynomial
X2 + X + 1 is an extension field extended from F2 containing the integers 0 and 1 as well as the
polynomials X and X + 1, and its operations are tabulated as follows.

+ 0 1 X X + 1
0 0 1 X X + 1
1 1 0 X + 1 X
X X X + 1 0 1

X + 1 X + 1 X 1 0

· 0 1 X X + 1
0 0 0 0 0
1 0 1 X X + 1
X 0 X X + 1 1

X + 1 0 X + 1 1 X

While subtraction and division are not explicitly tabulated here, they can be inferred indirectly from
addition and multiplication, albeit not so easily for division. In particular, computing divisions in extension
fields involve the extended Euclidean algorithm, which makes it an order of magnitude slower than the other
operations, and as such are generally avoided in ECC whenever possible.

On the other hand, there are certain slow functions on Galois fields that are unavoidable in PBC that
are called sparingly. These include computing modular square roots with the Tonelli–Shanks algorithm and
checking if a field element is a primitive root of unity, both of which takes some effort in its implementation.

As all layers in ECC depend on Galois field arithmetic, they have to be optimised for maximal efficiency.
In particular, most Galois fields used in ECC are prime fields, which are made incredibly fast by low-level
optimisations, or extension fields of the form F2m , which can be optimised considerably with bit operations.

2



3 Elliptic curve operations

Elliptic curves are the main objects considered in ECC, and a formal definition depends on that of a general
field, and involves several concepts in the mathematical field of algebraic geometry.

Definition. A projective plane curve of degree n over a field K is the set of triples of solutions to a
polynomial equation in three variables such that each monomial has a total degree of n. A projective plane
curve is smooth if its partial derivatives with respect to its three variables are not all zero. An elliptic
curve over a field K is then a smooth projective plane curve of degree three with a specified base point.

For example, projective plane curves of degree two over F2 are exactly the sets of the form

{(X,Y, Z) ∈ K : aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z = 0},

where the coefficients a to f are either 0 or 1, and these are smooth whenever at least one of

2aX + dY + eZ, 2bY + dX + fZ, 2cZ + eX + fY,

their partial derivatives with respect to X, Y , and Z, is not zero. In the degree three case, there is powerful
result in algebraic geometry known as the Riemann–Roch theorem that characterises all possible elliptic
curves over any field where 1 + 1 ̸= 0 and 1 + 1 + 1 ̸= 0. From now on, all fields will be implicitly assumed
to satisfy these conditions to simplify explanations, but the general theory will still hold regardless.

Theorem. An elliptic curve over a field K is a set of the form

{(x, y) ∈ K2 : y2 = x3 + ax+ b} ∪ {O},

where the coefficients a and b are in K and satisfy 4a3 + 27b2 ̸= 0, and O is a fixed specified symbol.

Here, the number of variables has been decreased by one due to a reversible process known as deho-
mogenisation, giving a smooth affine plane curve of two variables that can be plotted in a Euclidean
plane, as well as a newly introduced point at infinity O capturing the remaining loss of information.

Theorem. An elliptic curve over any field is an abelian group as follows.

� The identity point is the point at infinity O.

� The inverse point of a point is obtained by reflecting the point about the x-axis.

� The addition of two points is obtained by inverting the third point of intersection between the curve and
the line joining the two points.

It turns out that this definition of an abelian group is indeed well-defined, but in certain edge cases, the
inverse of a point or the addition of two points may not exist in the plane, and in these cases they will be
defined as the point at infinity O. It will be remarked that the group axiom of associativity is by far the
most difficult to verify, and several general geometric techniques can been developed just to tackle this, but
this is indeed true and can be implicitly assumed in the uses in ECC.

Given the definition of the group law above, it is possible to give explicit formulae for the various
operations using the chord and tangent rule, possibly having many cases to consider in each operation. For
example, addition of points in the affine part of the elliptic curve depend on whether the points are the
same, in which case the tangent at that point will be drawn for point doubling, or otherwise, in which case
an obvious line can be drawn between them. In any case, these explicit formulae are always the same and
depend on the coefficients a and b, and as such are usually recorded in online ECC databases.

With all of the basic group operations being defined, a slightly higher level operation known as scalar
multiplication can also be defined in terms of these, which involves taking an affine point (x, y) and efficiently
computing n(x, y) = (x, y) + · · · + (x, y) with exponentiation by squaring. Instead of performing group
operations on all of the points of the curve, a subset is usually chosen carefully such that any point is
attainable from any other point from scalar multiplication with itself sufficiently many times, and this
subset will again have a prime number of points so that the arithmetic of a prime field can be reused. Scalar
multiplication is used very often in ECC, and it is the basis for the intractability of the elliptic curve discrete
logarithm problem, namely the problem of computing the integer n given the affine points (x, y) and n(x, y).

3



In ECC, elliptic curves are mostly defined over the Galois fields Fp and F2m , since cryptographic operations
tend to be finitary. In many use cases, the elliptic curve itself is usually fixed and publicly available as a set
of recommended domain parameters, possibly with a popular name such as JubJub. These parameters are
designed carefully, often with nothing-up-my-sleeve numbers, such that for instance, fewer multiplications
are needed in the explicit formulae and the size of the special subset is a prime number.

There are several other considerations when implementing an efficient ECC library. As aforementioned,
while division is an expensive Galois field operation, it is used several times in every addition of affine points.
This could be circumvented by reconsidering projective points that omits the point at infinity completely,
and would have slightly different explicit formulae that do not involve division but with a markedly increase
number of multiplications. There will hence be a trade-off between the higher number of multiplications and
the higher cost of divisions, and this can only be determined with benchmarking experiments.

Finally, an important consideration would be the usability and extensibility of an ECC library in larger
contexts. As there is a wide range of protocols that use different elliptic curves, it would be beneficial for a
library to include as many known curves as possible, and allow for a flexible polymorphism between them.
For instance, in a battle to resist timing attacks while maintaining optimal efficiency, the recent development
of Edwards curves, which have very different complete addition formulae that do not distinguish between
the different addition cases, surged in popularity in contrast to the conventional Weierstrass curves given
above. These exotic curves should ideally be present in any readily extensible elliptic curve library.

4 Bilinear pairing algorithms

Bilinear pairings are the main functions considered in PBC and pairing-based ECC, and a formal definition
is rather simple. Let G1 and G2 be two abelian groups of size q, and let GT be an abelian group of size q
dependent on G1 and G2. The latter group is conventionally written multiplicatively, so that its identity is
1 and scalar multiplication becomes scalar exponentiation, but this will not affect the overall computation.

Definition. A pairing of G1 and G2 is a map ⟨−,−⟩ : G1 ×G2 → GT such that

� (bilinearity) for all P in G1 and Q in G2, and for all non-zero a and b in Fq we have ⟨aP, bQ⟩ =
⟨P,Q⟩ab,

� (non-degeneracy) there exist P in G1 and Q in G2 such that ⟨P,Q⟩ ≠ 1, and

� (computability) there exists an efficient algorithm to compute ⟨−,−⟩.

These abelian groups may be Galois fields under multiplication or elliptic curve point groups under
addition. An efficient pairing defined for a particular family of elliptic curves will be the main example.

Definition. A Barreto–Naehrig curve is an elliptic curve over a field Fp12 of the form

E(Fp12) = {(x, y) ∈ F2
p12 : y2 = x3 + b} ∪ {O},

where the coefficient b is in Fp, and the size of the group E(Fp) is a prime number q defined by

p = 36t4 + 36t3 + 24t2 + 6t+ 1, q = 36t4 + 36t3 + 18t2 + 6t+ 1,

where the Barreto–Naehrig parameter t is a specified integer.

These elliptic curves are pairing-friendly, which means that a suitably nice pairing algorithm can be
defined over its subgroups, subsets that are groups themselves. In particular, the subgroup

E(Fp) = {(x, y) ∈ F2
p : y2 = x3 + b} ∪ {O}

will play the role of G1, and a size q subgroup of the twisted elliptic curve point group

E′(Fp2) = {(x, y) ∈ F2
p : y2 = x3 + b/ξ} ∪ {O}

will play the role of G2, where the coefficient ξ is in F2
p. The target group GT will then be inhabited by a

size q multiplicative subgroup of Fp12 , of which each element in the group is a q-th root of 1.

4



Definition. The optimal ate pairing over a Barreto–Naehrig curve E(Fp12) is a map

⟨−,−⟩ : E(Fp)× E′(Fp2) → Fp12

defined by the following algorithm.

Input: P in E(Fp) and Q in E(Fp2)

Output: <P, Q> in Fp12

1. Write s = 6t + 2 as a sum of signed binary powers {s_i}_i for i in [0 .. l - 1]

2. (T, f) <- (Q, 1)

3. for i in [l - 2 .. 0] do

4. (T, f) <- (T + T, f^2 * Line(T, T, P))

5. if s_i = -1 then

6. (T, f) <- (T - Q, f * Line(T, -Q, P))

7. else if s_i = 1 then

8. (T, f) <- (T + Q, f * Line(T, Q, P))

9. end if

10. end for

11. Q1 <- Frob(Q), Q2 <- Frob(Q1)

12. (T, f) <- (T + Q1, f * Line(T, Q1, P))

13. f <- f * Line(T, -Q2, P)

14. f <- f^((p^12 - 1) / q)

15. return f

Line(T, Q, P) is the equation of the line joining T and Q, evaluated at P and embedded into Fp12 via

E′(Fp2) −→ E(Fp12)

(x, y) 7−→ (xξ1/2, yξ1/3),

and Frob(Q) is the Frobenius endomorphism

E′(Fp2) −→ E′(Fp2)

(x, y) 7−→ (xp, yp).

The optimal ate pairing is a variant of the more well-known Tate pairing used in general number theory
but is optimised for efficiency with a shorter main loop. While the algorithm here is explicit, its proof of
correctness using the notion of divisors can be found in the literature and will be omitted here for brevity.

Theorem. The optimal ate pairing over a Barreto–Naehrig curve is computable non-degenerate bilinear.

Several obvious optimisations can be made to the algorithm itself, such as skipping a potentially expensive
line function computation during the assignment of T + Q and l(T,Q, P ) by storing certain values. More
importantly, there are heavy field-specific optimisations for computing Frobenius endomorphisms and the
final exponentiation step, both of which take up a majority of the computation time in PBC.

As for ECC protocols, different PBC protocols may use differing pairing-friendly curve families, and as
such it is desirable to have some form of polymorphism between them. For instance, several zkSNARK
actively make use of the Barreto–Lynn–Scott curve family, which is markedly different in structure to the
Barreto–Naehrig curve family but with an equivalently defined optimal ate pairing algorithm.

5 Conclusion

While it is in the best interest of theoretical mathematics to abstract ideas into general features, the trade-off
with actual performance in cryptographic protocols always needs to be considered. Fortunately, the type
system of Haskell is sufficiently powerful to achieve the best of both worlds, allowing for a clean polymorphic
abstraction while maintaining relatively good performance.

5


