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Elliptic curves

Let E be an elliptic curve over a number field K .

Theorem (Mordell–Weil)
E (K ) is a finitely generated abelian group of the form

E (K ) ∼= tor(E/K )⊕ Zrk(E/K).

The torsion subgroup tor(E/K ) is effectively computable.

Theorem (Lutz–Nagell)
If (x , y) ∈ tor(E/Q), then y ∈ Z and either y = 0 or y2 | ∆(E/Q).

Theorem (Mazur, Kamienny, Merel)
There are finitely many possibilities for tor(E/K ).
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Elliptic curves

Let E be an elliptic curve over a number field K .

Theorem (Mordell–Weil)
E (K ) is a finitely generated abelian group of the form

E (K ) ∼= tor(E/K )⊕ Zrk(E/K).

The rank rk(E/K ) is computationally harder and more mysterious.

Conjecture (Birch–Swinnerton-Dyer)
If K = Q, then ords=1 L(E , s) = rk(E/Q).

Theorem (Kolyvagin)
BSD holds for modular elliptic curves with analytic rank zero and one.
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Rank distribution conjecture

How is the rank distributed?

Consider the set E(Q) of unique minimal representatives of isomorphism
classes of elliptic curves over Q, ordered by the height function

H(E : y2 = x3 + Ax + B) = max(4|A|3, 27|B|2).

Conjecture (Rank distribution)
The average rank of E(Q) is 1

2 .

Theorem (Bhargava–Shankar 2015)
The average rank of E(Q) is at most 7

6 .

Combining these shows that BSD holds for a positive proportion of E(Q)
(Kolyvagin 1989, Breuil–Conrad–Diamond–Taylor 2001, Neková̌r 2009,
Dokchitser–Dokchitser 2010, Skinner–Urban 2015).
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Rank boundedness conjecture

Is the rank bounded? Probably not...

Conjecture (Rank boundedness)
There are E ∈ E(Q) of arbitrarily large rank.

Theorem (Shafarevich–Tate 1967, Ulmer 2002)
There are E ∈ E(Fp(T )) of arbitrarily large rank.

Theorem (Elkies 2006)
There is E ∈ E(Q) with rank at least 28.

Theorem (Elkies–Klagsbrun 2020)
There is E ∈ E(Q) with rank exactly 20.

Many proponents (Cassels 1966, Tate 1974, Mestre 1982, Silverman
1986, Brumer 1992, Ulmer 2002, Farmer–Gonek–Hughes 2007).
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Rank boundedness conjecture

Is the rank bounded? Probably!

Conjecture (Poonen et al 2 3 4)
There are finitely many E ∈ E(Q) with rank greater than 21.

▶ Model pe-Selmer groups using intersection of quadratic submodules.

▶ Model Tate–Shafarevich groups using matrices with a fixed rank.

▶ Model the Mordell–Weil rank using matrices without fixing the rank.

A few others also predict boundedness (Néron 1950, Honda 1960,
Rubin–Silverberg 2000, Granville 2006, Watkins 2015).

2B. Poonen and E. Rains. ‘Random maximal isotropic subspaces and Selmer
groups’. In: J. Amer. Math. Soc 25 (2012)

3M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. ‘Modelling the
distribution of ranks, Selmer groups, and Shafarevich–Tate groups of elliptic curves’.
In: Camb. J. Math. 3 (2015)

4J. Park, B. Poonen, J. Voight and M. Wood. ‘A heuristic for boundedness of
ranks of elliptic curves’. In: J. Eur. Math. Soc (2019)
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The Selmer and Tate–Shafarevich groups

Multiplication by n ∈ N+ gives

0 → E [n] → E
[n]−→ E → 0.

Applying Gal(K/K ) cohomology gives

0 E (K )[n] E (K ) E (K )

H1(K ,E [n]) H1(K ,E ) H1(K ,E ) . . . .

δ

Truncating at H1(K ,E [n]) gives a short exact sequence

0 → E (K )/n → H1(K ,E [n]) → H1(K ,E )[n] → 0.

Similarly, there are short exact sequences

0 → E (Kv )/n → H1(Kv ,E [n]) → H1(Kv ,E )[n] → 0.
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The Selmer and Tate–Shafarevich groups

There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0.

λ
σ

τ [n]

κ

The n-Selmer group is

Seln(E/K ) = ker(σ : H1(K ,E [n]) →
∏

v H
1(Kv ,E )[n]).

The Tate–Shafarevich group is

X(E/K ) = ker(τ : H1(K ,E ) →
∏

v H
1(Kv ,E )).

There is an exact sequence

0 → E (K )/n → Seln(E/K ) → X(E/K )[n] → 0.
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Modelling pe-Selmer groups

Theorem
For almost all E ∈ E(K ), the pe-Selmer group Selpe (E/K ) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Consider (Z/pe)2n, equipped with hyperbolic quadratic form

(x1, . . . , xn, y1, . . . , yn) 7→
n∑

i=1

xiyi ,

with two MTIDS’s (Z/pe)n ⊕ 0n and 0n ⊕ (Z/pe)n.

The result was known for a finite-dimensional vector space over F2

(Colliot-Thélène–Skorobogatov–Swinnerton-Dyer 2002).
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Modelling pe-Selmer groups

By the first isomorphism theorem,

Seln(E/K )/ ker λ ∼= imκ ∩ imλ.

Theorem
For almost all E ∈ E(K ), the pe-Selmer group Selpe (E/K ) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Conjecture
The distribution of Selpe (E/Q) coincides with the distribution of S1 ∩ S2
for two randomly chosen MTIDS’s S1,S2 ⊆ (Z/pe)2n as n → ∞.

▶ Variant for function fields is known (Feng–Landesman–Rains 2020).

▶ Variant for quadratic twist families over Q is known for pe = 2
(Heath-Brown 1994, Swinnerton-Dyer 2008, Kane 2013).

▶ Average of #(S1 ∩ S2) is σ1(p
e), and average of #Selpe (E/Q) is

σ1(p
e) for pe ≤ 5 (Bhargava–Shankar 2013-2015).
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Modelling short exact sequences

Recall that

0 → E (K )/n → Seln(E/K ) → X(E/K )[n] → 0.

Setting n = pe and taking direct limits gives

0 → E (K )⊗Qp/Zp → lim−→
e

Selpe (E/K ) → X(E/K )[p∞] → 0.

Randomly choosing two MTIDS’s S1,S2 ⊆ (Zp)
2n gives

0 → R → S → T → 0,

where R = (S1 ∩ S2)⊗Qp/Zp and S = (S1 ⊗Qp/Zp) ∩ (S2 ⊗Qp/Zp).

▶ Both lim−→e
Selpe (E/K ) and S are compatible with pe-parts.

▶ Both X(E/K )[p∞] and T are finite with an alternating pairing.

▶ Both E (K )⊗Qp/Zp and R satisfy the rank distribution conjecture.

▶ Variant for quadratic twist families is known for p = 2 (Smith 2020).
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Modelling Tate–Shafarevich groups

The rank distribution conjecture gives

P(rkZp (S1 ∩ S2) = 0) = P(rkZp (S1 ∩ S2) = 1) =
1

2
.

If r ≥ 2, then
{S1,S2 ⊆ Z2n

p : rkZp (S1 ∩ S2) = r}

has measure zero as n → ∞.

Instead choose M randomly from

{M ∈ Matn Zp : M⊺ = −M, rkZp (kerM) = r}, n ≡ r mod 2,

and let n → ∞. Use distribution of tor(cokerM) to model T .

▶ Coincides with original Z2n
p distribution for T for rank zero and one.

▶ Coincides with Delaunay’s distribution for X(E/Q)[p∞]
(Delaunay–Jouhet 2000-2014).
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Modelling ranks

How to model an elliptic curve E over Q of height h?

▶ Choose functions X : N → R and Y : N → R such that

X (x)Y (x) = x
1
12+o(1), x → ∞.

▶ Choose n randomly from {⌈Y (h)⌉, ⌈Y (h)⌉+ 1}.
▶ Choose M randomly from

{M ∈ Matn Z : M⊺ = −M, Mij ≤ X (h)}.

▶ Model X(E/Q) by tor(cokerM) and rk(E/Q) by rkZ(kerM).

Conditions are chosen such that the average size of

# coker′0 M =

{
#tor(cokerM) if rkZ(kerM) = 0,

0 if rkZ(kerM) > 0,

is h1/12+o(1). The same is predicted for X(E/Q) by strong BSD.
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Modelling ranks

Denote the model for rk(E/Q) by rk′(E/Q).

Theorem (Poonen et al)
The following hold with probability 1.

#{E ∈ E(Q) : H(E ) ≤ h, rk′(E/Q) = 0} = h20/24+o(1)

#{E ∈ E(Q) : H(E ) ≤ h, rk′(E/Q) = 1} = h20/24+o(1)

#{E ∈ E(Q) : H(E ) ≤ h, rk′(E/Q) ≥ 2} = h19/24+o(1)

...

#{E ∈ E(Q) : H(E ) ≤ h, rk′(E/Q) ≥ 20} = h1/24+o(1)

#{E ∈ E(Q) : H(E ) ≤ h, rk′(E/Q) ≥ 21} ≤ ho(1)

#{E ∈ E(Q) : rk′(E/Q) > 21} is finite.
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