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Let E be an elliptic curve over a number field K .

Theorem (Mordell-Weil)
E (K ) is a finitely generated abelian group of the form

E (K ) ∼= tors(E/K )⊕ Zrk(E/K).

The torsion subgroup tors(E/K ) is effectively computable.

Theorem (Lutz-Nagell)
If (x , y) ∈ tors(E/Q), then y ∈ Z and either y = 0 or y2 | ∆(E/Q).

Theorem (Mazur, Kamienny, Merel)
There are finitely many possibilities for tors(E/K ).
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Elliptic curves

Let E be an elliptic curve over a number field K .

Theorem (Mordell-Weil)
E (K ) is a finitely generated abelian group of the form

E (K ) ∼= tors(E/K )⊕ Zrk(E/K).

The rank rk(E/K ) is computationally harder and more mysterious.

Conjecture (Birch-Swinnerton-Dyer)
If K = Q, then

ords=1 L(E , s) = rk(E/Q).

Theorem (Kolyvagin)
BSD holds for modular elliptic curves with analytic rank zero and one.
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classes of elliptic curves over Q, ordered by the height function

h(E : y2 = x3 + Ax + B) = max(4|A|3, 27|B|2).
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Rank distribution conjecture

How is the rank distributed?

Consider the set E(Q) of unique minimal representatives of isomorphism
classes of elliptic curves over Q, ordered by the height function

h(E : y2 = x3 + Ax + B) = max(4|A|3, 27|B|2).

Conjecture (Rank distribution)
The average rank of E(Q) is 1

2 .

Theorem (Bhargava-Shankar 2015)
The average rank of E(Q) is at most 7

6 .

Combining these shows that BSD holds for a positive proportion of E(Q)
(Kolyvagin 1989, Breuil-Conrad-Diamond-Taylor 2001, Neková̌r 2009,
Dokchitser-Dokchitser 2010, Skinner-Urban 2015).
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Rank boundedness conjecture

Is the rank bounded? Probably not...

Conjecture (Rank boundedness)
There are E ∈ E(Q) of arbitrarily large rank.

Theorem (Shafarevich-Tate 1967, Ulmer 2002)
There are E ∈ E(Fp(T )) of arbitrarily large rank.

Theorem (Elkies 2006)
There is E ∈ E(Q) with rank at least 28.

Theorem (Elkies-Klagsbrun 2020)
There is E ∈ E(Q) with rank exactly 20.

Many proponents of this (Cassels 1966, Tate 1974, Mestre 1982,
Silverman 1986, Brumer 1992, Ulmer 2002, Farmer-Gonek-Hughes 2007).
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Rank boundedness conjecture

Is the rank bounded? Probably!

Conjecture (Poonen et al 2 3 4)
There are finitely many E ∈ E(Q) with rank greater than 21.

2B. Poonen and E. Rains. ’Random maximal isotropic subspaces and Selmer
groups’. In: J. Amer. Math. Soc 25 (2012)

3M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. ’Modelling the
distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves’.
In: Camb. J. Math. 3 (2015)

4J. Park, B. Poonen, J. Voight and M. Wood. ’A heuristic for boundedness of
ranks of elliptic curves’. In: J. Eur. Math. Soc (2019)
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Conjecture (Poonen et al 2 3 4)
There are finitely many E ∈ E(Q) with rank greater than 21.

I Model pe-Selmer groups using intersection of quadratic submodules.

I Model Tate-Shafarevich groups using matrices with a fixed rank.

I Model the Mordell-Weil rank using matrices without fixing the rank.

A few others also predict boundedness (Néron 1950, Honda 1960,
Rubin-Silverberg 2000, Granville 2006, Watkins 2015).

2B. Poonen and E. Rains. ’Random maximal isotropic subspaces and Selmer
groups’. In: J. Amer. Math. Soc 25 (2012)
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K .

Multiplication by n ∈ N+ gives

0→ E [n]→ E
[n]−→ E → 0.

Applying Gal(K/K ) cohomology gives

0 E (K )[n] E (K ) E (K )

H1(K ,E [n]) H1(K ,E ) H1(K ,E ) . . . .

δ

Truncating at H1(K ,E [n]) gives

0 −→ E (K )/n H1(K ,E [n]) H1(K ,E )[n] −→ 0 .
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The Selmer and Tate-Shafarevich groups
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K .

There are short exact sequences

0 −→ E (K )/n H1(K ,E [n]) H1(K ,E )[n] −→ 0 .

0 −→ E (Kv )/n H1(Kv ,E [n]) H1(Kv ,E )[n] −→ 0 .

30 / 86



The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K .

There are short exact sequences

0 −→ E (K )/n H1(K ,E [n]) H1(K ,E )[n] −→ 0 .

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0 .
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K .

There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0
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Let E be an elliptic curve over a number field K .

There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0

λ
σ

κ

.

The n-Selmer group is

Sn(E/K ) = ker(σ : H1(K ,E [n])→
∏

v H
1(Kv ,E )[n]).

Exactness gives
Sn(E/K )/ ker λ

∼−→ imκ ∩ imλ.
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K .

There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0

λ
σ

τ [n]

κ

.

The Tate-Shafarevich group is

X(E/K ) = ker(τ : H1(K ,E )→
∏

v H
1(Kv ,E )).

There is an exact sequence

0→ E (K )/n→ Sn(E/K )→X(E/K )[n]→ 0.

36 / 86



Modelling pe-Selmer groups

Theorem
For almost all E ∈ E(K ), the pe-Selmer group Spe (E/K ) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.
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For almost all E ∈ E(K ), the pe-Selmer group Spe (E/K ) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Consider (Z/pe)2n, equipped with hyperbolic quadratic form

(x1, . . . , xn, y1, . . . , yn) 7→
n∑

i=1

xiyi ,

with two MTIDS’s (Z/pe)n ⊕ 0n and 0n ⊕ (Z/pe)n.
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For almost all E ∈ E(K ), the pe-Selmer group Spe (E/K ) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Consider (Z/pe)2n, equipped with hyperbolic quadratic form

(x1, . . . , xn, y1, . . . , yn) 7→
n∑

i=1

xiyi ,

with two MTIDS’s (Z/pe)n ⊕ 0n and 0n ⊕ (Z/pe)n.

The result was known for a finite-dimensional vector space over F2

(Colliot-Thélène-Skorobogatov-Swinnerton-Dyer 2002).
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Modelling pe-Selmer groups

Theorem
For almost all E ∈ E(K ), the pe-Selmer group Spe (E/K ) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Proof (Sketch).
Recall that Sn(E/K )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are maximal totally isotropic.

3. Prove imκ and imλ are direct summands.

4. Attain good criterion for ker λ = 0 when n = pe .
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Modelling pe-Selmer groups

Theorem
For almost all E ∈ E(K ), the pe-Selmer group Spe (E/K ) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Proof (Sketch).
Recall that Sn(E/K )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are maximal totally isotropic.

3. Prove imκ and imλ are direct summands.
I Use infinite group theory to characterise direct summands in terms of

divisibility-preserving maps and apply global arithmetic duality.

4. Attain good criterion for ker λ = 0 when n = pe .
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I Average of #(S1 ∩ S2) is σ1(pe), and average of #Spe (E/Q) is
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62 / 86



Modelling short exact sequences

Recall that

0→ E (K )/n→ Sn(E/K )→X(E/K )[n]→ 0.

Setting n = pe and taking direct limits gives

0→ E (K )⊗Qp/Zp → lim−→
e

Spe (E/K )→X(E/K )[p∞]→ 0.

Randomly choosing two MTIDS’s S1,S2 ⊆ (Zp)2n gives

0→ R→ S → T → 0,

where R = (S1 ∩ S2)⊗Qp/Zp and S = (S1 ⊗Qp/Zp) ∩ (S2 ⊗Qp/Zp).

I Both lim−→e
Spe (E/K ) and S are compatible with pe-parts.

I Both X(E/K )[p∞] and T are finite with an alternating pairing.

I Both E (K )⊗Qp/Zp and R satisfy the rank distribution conjecture.

I Variant for quadratic twist families is known for p = 2 (Smith 2020).

63 / 86



Modelling short exact sequences

Recall that

0→ E (K )/n→ Sn(E/K )→X(E/K )[n]→ 0.

Setting n = pe and taking direct limits gives

0→ E (K )⊗Qp/Zp → lim−→
e

Spe (E/K )→X(E/K )[p∞]→ 0.

Randomly choosing two MTIDS’s S1,S2 ⊆ (Zp)2n gives

0→ R→ S → T → 0,

where R = (S1 ∩ S2)⊗Qp/Zp and S = (S1 ⊗Qp/Zp) ∩ (S2 ⊗Qp/Zp).

I Both lim−→e
Spe (E/K ) and S are compatible with pe-parts.

I Both X(E/K )[p∞] and T are finite with an alternating pairing.

I Both E (K )⊗Qp/Zp and R satisfy the rank distribution conjecture.

I Variant for quadratic twist families is known for p = 2 (Smith 2020).

64 / 86



Modelling short exact sequences

Recall that

0→ E (K )/n→ Sn(E/K )→X(E/K )[n]→ 0.

Setting n = pe and taking direct limits gives

0→ E (K )⊗Qp/Zp → lim−→
e

Spe (E/K )→X(E/K )[p∞]→ 0.

Randomly choosing two MTIDS’s S1,S2 ⊆ (Zp)2n gives

0→ R→ S → T → 0,

where R = (S1 ∩ S2)⊗Qp/Zp and S = (S1 ⊗Qp/Zp) ∩ (S2 ⊗Qp/Zp).

I Both lim−→e
Spe (E/K ) and S are compatible with pe-parts.

I Both X(E/K )[p∞] and T are finite with an alternating pairing.

I Both E (K )⊗Qp/Zp and R satisfy the rank distribution conjecture.

I Variant for quadratic twist families is known for p = 2 (Smith 2020).

65 / 86



Modelling Tate-Shafarevich groups

The rank distribution conjecture gives

P(rkZp (S1 ∩ S2) = 0) = P(rkZp (S1 ∩ S2) = 1) =
1

2
.
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I Coincides with Delaunay’s distribution for X(E/Q)[p∞]
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and use distribution of rkZp (kerM) to model r .

I Measure zero locus.

I Alternating matrices have even rank.

Need a more refined model.
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Modelling ranks

How to model an elliptic curve E over Q of height h?
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Modelling ranks

How to model an elliptic curve E over Q of height h?

I Choose functions X : N→ R and Y : N→ R such that

X (x)Y (x) = x
1
12+o(1), x →∞.

I Choose n randomly from {dY (h)e, dY (h)e+ 1}.
I Choose M randomly from

{M ∈ Matn Z | Mᵀ = −M, Mij ≤ X (h)}.

I Model X(E/Q) by tors(cokerM) and rk(E/Q) by rkZ(kerM).
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I Model X(E/Q) by tors(cokerM) and rk(E/Q) by rkZ(kerM).

Conditions are chosen such that the average size of

# coker′0 M =

{
# tors(cokerM) rkZ(kerM) = 0

0 rkZ(kerM) > 0

is h1/12+o(1).
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I Choose functions X : N→ R and Y : N→ R such that

X (x)Y (x) = x
1
12+o(1), x →∞.

I Choose n randomly from {dY (h)e, dY (h)e+ 1}.
I Choose M randomly from

{M ∈ Matn Z | Mᵀ = −M, Mij ≤ X (h)}.

I Model X(E/Q) by tors(cokerM) and rk(E/Q) by rkZ(kerM).

Conditions are chosen such that the average size of

# coker′0 M =

{
# tors(cokerM) rkZ(kerM) = 0

0 rkZ(kerM) > 0

is h1/12+o(1). The same is predicted for X(E/Q) by strong BSD.
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Modelling ranks

Denote the model for rk(E/Q) by rk′(E/Q).
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Modelling ranks

Denote the model for rk(E/Q) by rk′(E/Q).

Theorem (Poonen et al)
The following hold with probability 1.

#{E ∈ E(Q) | h(E ) ≤ h, rk′(E/Q) = 0} = h20/24+o(1)

#{E ∈ E(Q) | h(E ) ≤ h, rk′(E/Q) = 1} = h20/24+o(1)

#{E ∈ E(Q) | h(E ) ≤ h, rk′(E/Q) ≥ 2} = h19/24+o(1)

...

#{E ∈ E(Q) | h(E ) ≤ h, rk′(E/Q) ≥ 20} = h1/24+o(1)

#{E ∈ E(Q) | h(E ) ≤ h, rk′(E/Q) ≥ 21} ≤ ho(1)

#{E ∈ E(Q) | rk′(E/Q) > 21} is finite

.
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