Rank heuristics for elliptic curves ${ }^{1}$

David Ang
Part III Seminar Series
Michaelmas 2020 - Friday, 4 December

[^0]
Elliptic curves

Let E be an elliptic curve over a number field K.

Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group of the form

$$
E(K) \cong \operatorname{tors}(E / K) \oplus \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group of the form

$$
E(K) \cong \operatorname{tors}(E / K) \oplus \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

The torsion subgroup tors (E / K) is effectively computable.

Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group of the form

$$
E(K) \cong \operatorname{tors}(E / K) \oplus \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

The torsion subgroup tors (E / K) is effectively computable.
Theorem (Lutz-Nagell)
If $(x, y) \in \operatorname{tors}(E / \mathbb{Q})$, then $y \in \mathbb{Z}$ and either $y=0$ or $y^{2} \mid \Delta(E / \mathbb{Q})$.

Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group of the form

$$
E(K) \cong \operatorname{tors}(E / K) \oplus \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

The torsion subgroup tors (E / K) is effectively computable.
Theorem (Lutz-Nagell)
If $(x, y) \in \operatorname{tors}(E / \mathbb{Q})$, then $y \in \mathbb{Z}$ and either $y=0$ or $y^{2} \mid \Delta(E / \mathbb{Q})$.
Theorem (Mazur, Kamienny, Merel)
There are finitely many possibilities for tors (E / K).

Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group of the form

$$
E(K) \cong \operatorname{tors}(E / K) \oplus \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

The rank $\operatorname{rk}(E / K)$ is computationally harder and more mysterious.

Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group of the form

$$
E(K) \cong \operatorname{tors}(E / K) \oplus \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

The rank $\mathrm{rk}(E / K)$ is computationally harder and more mysterious.
Conjecture (Birch-Swinnerton-Dyer)
If $K=\mathbb{Q}$, then

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rk}(E / \mathbb{Q}) .
$$

Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group of the form

$$
E(K) \cong \operatorname{tors}(E / K) \oplus \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

The rank $\mathrm{rk}(E / K)$ is computationally harder and more mysterious.
Conjecture (Birch-Swinnerton-Dyer)
If $K=\mathbb{Q}$, then

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rk}(E / \mathbb{Q}) .
$$

Theorem (Kolyvagin)
BSD holds for modular elliptic curves with analytic rank zero and one.

Rank distribution conjecture

How is the rank distributed?

Rank distribution conjecture

How is the rank distributed?
Consider the set $\mathcal{E}(\mathbb{Q})$ of unique minimal representatives of isomorphism classes of elliptic curves over \mathbb{Q}, ordered by the height function

$$
\mathfrak{h}\left(E: y^{2}=x^{3}+A x+B\right)=\max \left(4|A|^{3}, 27|B|^{2}\right) .
$$

Rank distribution conjecture

How is the rank distributed?
Consider the set $\mathcal{E}(\mathbb{Q})$ of unique minimal representatives of isomorphism classes of elliptic curves over \mathbb{Q}, ordered by the height function

$$
\mathfrak{h}\left(E: y^{2}=x^{3}+A x+B\right)=\max \left(4|A|^{3}, 27|B|^{2}\right) .
$$

Conjecture (Rank distribution)
The average rank of $\mathcal{E}(\mathbb{Q})$ is $\frac{1}{2}$.

Rank distribution conjecture

How is the rank distributed?
Consider the set $\mathcal{E}(\mathbb{Q})$ of unique minimal representatives of isomorphism classes of elliptic curves over \mathbb{Q}, ordered by the height function

$$
\mathfrak{h}\left(E: y^{2}=x^{3}+A x+B\right)=\max \left(4|A|^{3}, 27|B|^{2}\right) .
$$

Conjecture (Rank distribution)
The average rank of $\mathcal{E}(\mathbb{Q})$ is $\frac{1}{2}$.
Theorem (Bhargava-Shankar 2015)
The average rank of $\mathcal{E}(\mathbb{Q})$ is at most $\frac{7}{6}$.

Rank distribution conjecture

How is the rank distributed?

Consider the set $\mathcal{E}(\mathbb{Q})$ of unique minimal representatives of isomorphism classes of elliptic curves over \mathbb{Q}, ordered by the height function

$$
\mathfrak{h}\left(E: y^{2}=x^{3}+A x+B\right)=\max \left(4|A|^{3}, 27|B|^{2}\right) .
$$

Conjecture (Rank distribution)
The average rank of $\mathcal{E}(\mathbb{Q})$ is $\frac{1}{2}$.
Theorem (Bhargava-Shankar 2015)
The average rank of $\mathcal{E}(\mathbb{Q})$ is at most $\frac{7}{6}$.

Combining these shows that BSD holds for a positive proportion of $\mathcal{E}(\mathbb{Q})$ (Kolyvagin 1989, Breuil-Conrad-Diamond-Taylor 2001, Nekovár 2009, Dokchitser-Dokchitser 2010, Skinner-Urban 2015).

Rank boundedness conjecture

Is the rank bounded?

Rank boundedness conjecture

Is the rank bounded? Probably not...

Conjecture (Rank boundedness)
There are $E \in \mathcal{E}(\mathbb{Q})$ of arbitrarily large rank.

Rank boundedness conjecture

Is the rank bounded? Probably not...

Conjecture (Rank boundedness)
There are $E \in \mathcal{E}(\mathbb{Q})$ of arbitrarily large rank.
Theorem (Shafarevich-Tate 1967, Ulmer 2002)
There are $E \in \mathcal{E}\left(\mathbb{F}_{p}(T)\right)$ of arbitrarily large rank.

Rank boundedness conjecture

Is the rank bounded? Probably not...

Conjecture (Rank boundedness)
There are $E \in \mathcal{E}(\mathbb{Q})$ of arbitrarily large rank.
Theorem (Shafarevich-Tate 1967, Ulmer 2002)
There are $E \in \mathcal{E}\left(\mathbb{F}_{p}(T)\right)$ of arbitrarily large rank.
Theorem (Elkies 2006)
There is $E \in \mathcal{E}(\mathbb{Q})$ with rank at least 28 .
Theorem (Elkies-Klagsbrun 2020)
There is $E \in \mathcal{E}(\mathbb{Q})$ with rank exactly 20 .

Rank boundedness conjecture

Is the rank bounded? Probably not...

Conjecture (Rank boundedness)
There are $E \in \mathcal{E}(\mathbb{Q})$ of arbitrarily large rank.
Theorem (Shafarevich-Tate 1967, Ulmer 2002)
There are $E \in \mathcal{E}\left(\mathbb{F}_{p}(T)\right)$ of arbitrarily large rank.
Theorem (Elkies 2006)
There is $E \in \mathcal{E}(\mathbb{Q})$ with rank at least 28 .
Theorem (Elkies-Klagsbrun 2020)
There is $E \in \mathcal{E}(\mathbb{Q})$ with rank exactly 20 .

Many proponents of this (Cassels 1966, Tate 1974, Mestre 1982, Silverman 1986, Brumer 1992, Ulmer 2002, Farmer-Gonek-Hughes 2007).

Rank boundedness conjecture

Is the rank bounded? Probably!

Conjecture (Poonen et al $\left.\begin{array}{lll}2 & 3 & 4\end{array}\right)$
There are finitely many $E \in \mathcal{E}(\mathbb{Q})$ with rank greater than 21.

[^1]
Rank boundedness conjecture

Is the rank bounded? Probably!

Conjecture (Poonen et al $\left.\begin{array}{llll}2 & 3 & 4\end{array}\right)$
There are finitely many $E \in \mathcal{E}(\mathbb{Q})$ with rank greater than 21 .

- Model p^{e}-Selmer groups using intersection of quadratic submodules.

[^2]
Rank boundedness conjecture

Is the rank bounded? Probably!

Conjecture (Poonen et al $\left.\begin{array}{llll}2 & 3 & 4\end{array}\right)$
There are finitely many $E \in \mathcal{E}(\mathbb{Q})$ with rank greater than 21 .

- Model p^{e}-Selmer groups using intersection of quadratic submodules.
- Model Tate-Shafarevich groups using matrices with a fixed rank.

[^3]
Rank boundedness conjecture

Is the rank bounded? Probably!

Conjecture (Poonen et al $\left.\begin{array}{llll}2 & 3 & 4\end{array}\right)$
There are finitely many $E \in \mathcal{E}(\mathbb{Q})$ with rank greater than 21.

- Model p^{e}-Selmer groups using intersection of quadratic submodules.
- Model Tate-Shafarevich groups using matrices with a fixed rank.
- Model the Mordell-Weil rank using matrices without fixing the rank.

[^4]
Rank boundedness conjecture

Is the rank bounded? Probably!

Conjecture (Poonen et al $\left.\begin{array}{llll}2 & 3 & 4\end{array}\right)$
There are finitely many $E \in \mathcal{E}(\mathbb{Q})$ with rank greater than 21 .

- Model p^{e}-Selmer groups using intersection of quadratic submodules.
- Model Tate-Shafarevich groups using matrices with a fixed rank.
- Model the Mordell-Weil rank using matrices without fixing the rank.

A few others also predict boundedness (Néron 1950, Honda 1960, Rubin-Silverberg 2000, Granville 2006, Watkins 2015).

[^5]
The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

Multiplication by $n \in \mathbb{N}^{+}$gives

$$
0 \rightarrow E[n] \rightarrow E \xrightarrow{[n]} E \rightarrow 0 .
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

Multiplication by $n \in \mathbb{N}^{+}$gives

$$
0 \rightarrow E[n] \rightarrow E \xrightarrow{[n]} E \rightarrow 0 .
$$

Applying Gal($\bar{K} / K)$ cohomology gives

$$
\begin{aligned}
0 & \longrightarrow E(K)[n] \longrightarrow E(K) \longrightarrow E(K) \\
& \leftrightarrow H^{1}(K, E[n]) \rightarrow H^{1}(K, E) \rightarrow H^{1}(K, E) \rightarrow \ldots
\end{aligned}
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

Multiplication by $n \in \mathbb{N}^{+}$gives

$$
0 \rightarrow E[n] \rightarrow E \xrightarrow{[n]} E \rightarrow 0 .
$$

Applying $\operatorname{Gal}(\bar{K} / K)$ cohomology gives

Truncating at $H^{1}(K, E[n])$ gives

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a short exact sequence

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 .
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There are short exact sequences

$$
\begin{gathered}
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 . \\
0 \longrightarrow E\left(K_{v}\right) / n \longrightarrow H^{1}\left(K_{v}, E[n]\right) \longrightarrow H^{1}\left(K_{v}, E\right)[n] \longrightarrow 0 .
\end{gathered}
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There are short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 . \\
& 0 \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0 .
\end{aligned}
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
& 0 \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
& 0 \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The n-Selmer group is

$$
\mathcal{S}_{n}(E / K)=\operatorname{ker}\left(\sigma: H^{1}(K, E[n]) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n]\right) .
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

$$
\begin{aligned}
0 & \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
& \downarrow \\
0 & \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow{ }_{k} \\
\prod_{v} & H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The n-Selmer group is

$$
\mathcal{S}_{n}(E / K)=\operatorname{ker}\left(\sigma: H^{1}(K, E[n]) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n]\right) .
$$

Exactness gives

$$
\mathcal{S}_{n}(E / K) / \operatorname{ker} \lambda \xrightarrow{\sim} \operatorname{im} \kappa \cap \operatorname{im} \lambda .
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
& \downarrow \quad \lambda \downarrow \cdots \cdots, \quad \downarrow[n] \\
& 0 \rightarrow \prod_{v} E\left(K_{v}\right) / n \vec{k} \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The Tate-Shafarevich group is

$$
\amalg(E / K)=\operatorname{ker}\left(\tau: H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right) .
$$

The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

$$
\begin{aligned}
0 & \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
& \downarrow \\
0 & \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow{ }_{k} \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The Tate-Shafarevich group is

$$
\amalg(E / K)=\operatorname{ker}\left(\tau: H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right) .
$$

There is an exact sequence

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow \amalg(E / K)[n] \rightarrow 0 .
$$

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Consider $\left(\mathbb{Z} / p^{e}\right)^{2 n}$, equipped with hyperbolic quadratic form

$$
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto \sum_{i=1}^{n} x_{i} y_{i}
$$

with two MTIDS's $\left(\mathbb{Z} / p^{e}\right)^{n} \oplus 0^{n}$ and $0^{n} \oplus\left(\mathbb{Z} / p^{e}\right)^{n}$.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Consider $\left(\mathbb{Z} / p^{e}\right)^{2 n}$, equipped with hyperbolic quadratic form

$$
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto \sum_{i=1}^{n} x_{i} y_{i}
$$

with two MTIDS's $\left(\mathbb{Z} / p^{e}\right)^{n} \oplus 0^{n}$ and $0^{n} \oplus\left(\mathbb{Z} / p^{e}\right)^{n}$.
The result was known for a finite-dimensional vector space over \mathbb{F}_{2} (Colliot-Thélène-Skorobogatov-Swinnerton-Dyer 2002).

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.
- Construct $\mathrm{Ob}_{K_{v}}: H^{1}\left(K_{v}, E[n]\right) \rightarrow \operatorname{Br} K_{v} \hookrightarrow \mathbb{Q} / \mathbb{Z}$.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.
- Construct $\mathrm{Ob}_{K_{v}}: H^{1}\left(K_{v}, E[n]\right) \rightarrow \mathrm{Br} K_{v} \hookrightarrow \mathbb{Q} / \mathbb{Z}$.
- Prove $\langle\cdot, \cdot\rangle_{\mathrm{Ob}_{k_{v}}}=[\cdot, \cdot] \circ \mathrm{U}$, and deduce $\mathrm{Ob}_{k_{v}}$ is a quadratic form.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.
- Construct $\mathrm{Ob}_{K_{v}}: H^{1}\left(K_{v}, E[n]\right) \rightarrow \operatorname{Br} K_{v} \hookrightarrow \mathbb{Q} / \mathbb{Z}$.
- Prove $\langle\cdot, \cdot\rangle\rangle_{\mathrm{ob}_{\mathrm{k}_{v}}}=[\cdot, \cdot] \circ \mathrm{U}$, and deduce $\mathrm{Ob}_{k_{v}}$ is a quadratic form.
- Deduce non-degeneracy with local arithmetic duality.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and $\operatorname{im} \lambda$ are maximal totally isotropic.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and $\operatorname{im} \lambda$ are maximal totally isotropic.

- Use basic properties of Brauer-Severi diagrams to redefine $\mathrm{Ob}_{K_{v}}$.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are maximal totally isotropic.

- Use basic properties of Brauer-Severi diagrams to redefine $\mathrm{Ob}_{K_{v}}$.
- Define $M=\overline{\prod_{v}} H^{1}\left(K_{v}, E[n]\right)$ and $\mathfrak{q}=\sum_{v} \operatorname{inv}_{K_{v}} \circ \mathrm{Ob}_{k_{v}}: M \rightarrow \mathbb{Q} / \mathbb{Z}$.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are maximal totally isotropic.

- Use basic properties of Brauer-Severi diagrams to redefine $\mathrm{Ob}_{K_{v}}$.
- Define $M=\overline{\prod_{v}} H^{1}\left(K_{v}, E[n]\right)$ and $\mathfrak{q}=\sum_{v} \operatorname{inv}_{K_{v}} \circ \mathrm{Ob}_{K_{v}}: M \rightarrow \mathbb{Q} / \mathbb{Z}$.
- Conclude by B-S diagrams, class field theory, and arithmetic duality.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and $\operatorname{im} \lambda$ are maximal totally isotropic.
3. Prove $\operatorname{im} \kappa$ and $\operatorname{im} \lambda$ are direct summands.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are maximal totally isotropic.
3. Prove $\operatorname{im} \kappa$ and $\operatorname{im} \lambda$ are direct summands.

- Use infinite group theory to characterise direct summands in terms of divisibility-preserving maps and apply global arithmetic duality.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and $\operatorname{im} \lambda$ are maximal totally isotropic.
3. Prove im κ and im λ are direct summands.
4. Attain good criterion for $\operatorname{ker} \lambda=0$ when $n=p^{e}$.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are maximal totally isotropic.
3. Prove im κ and im λ are direct summands.
4. Attain good criterion for ker $\lambda=0$ when $n=p^{e}$.

- Use Chebotarev's density theorem to reduce to $H_{c}^{1}\left(\mathrm{im} \rho_{E[n]}, E[n]\right)$ and apply inflation-restriction repeatedly to reduce to $\mathrm{SL}_{2}(\mathbb{Z} / n)$.

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Proof (Sketch).

Recall that $\mathcal{S}_{n}(E / K) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are maximal totally isotropic.
3. Prove im κ and im λ are direct summands.
4. Attain good criterion for ker $\lambda=0$ when $n=p^{e}$.

- Use Chebotarev's density theorem to reduce to $H_{c}^{1}\left(\operatorname{im} \rho_{E[n]}, E[n]\right)$ and apply inflation-restriction repeatedly to reduce to $\mathrm{SL}_{2}(\mathbb{Z} / n)$.
- Extract assumption $\mathrm{SL}_{2}(\mathbb{Z} / n) \leq \operatorname{im} \rho_{E[n]}$ and justify its ubiquity using Hilbert's irreducibility theorem and n-division polynomials.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Conjecture
The distribution of $\mathcal{S}_{p^{e}}(E / \mathbb{Q})$ coincides with the distribution of $S_{1} \cap S_{2}$ for two randomly chosen MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z} / p^{e}\right)^{2 n}$ as $n \rightarrow \infty$.

Modelling p^{e}-Selmer groups

Theorem
For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Conjecture

The distribution of $\mathcal{S}_{p^{e}}(E / \mathbb{Q})$ coincides with the distribution of $S_{1} \cap S_{2}$ for two randomly chosen MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z} / p^{e}\right)^{2 n}$ as $n \rightarrow \infty$.

- Variant for function fields is known (Feng-Landesman-Rains 2020).

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Conjecture

The distribution of $\mathcal{S}_{p^{e}}(E / \mathbb{Q})$ coincides with the distribution of $S_{1} \cap S_{2}$ for two randomly chosen MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z} / p^{e}\right)^{2 n}$ as $n \rightarrow \infty$.

- Variant for function fields is known (Feng-Landesman-Rains 2020).
- Variant for quadratic twist families over \mathbb{Q} is known for $p^{e}=2$ (Heath-Brown 1994, Swinnerton-Dyer 2008, Kane 2013).

Modelling p^{e}-Selmer groups

Theorem

For almost all $E \in \mathcal{E}(K)$, the p^{e}-Selmer group $\mathcal{S}_{p^{e}}(E / K)$ is the intersection of two maximal totally isotropic direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Conjecture

The distribution of $\mathcal{S}_{p^{e}}(E / \mathbb{Q})$ coincides with the distribution of $S_{1} \cap S_{2}$ for two randomly chosen MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z} / p^{e}\right)^{2 n}$ as $n \rightarrow \infty$.

- Variant for function fields is known (Feng-Landesman-Rains 2020).
- Variant for quadratic twist families over \mathbb{Q} is known for $p^{e}=2$ (Heath-Brown 1994, Swinnerton-Dyer 2008, Kane 2013).
- Average of $\#\left(S_{1} \cap S_{2}\right)$ is $\sigma_{1}\left(p^{e}\right)$, and average of $\# \mathcal{S}_{p^{e}}(E / \mathbb{Q})$ is $\sigma_{1}\left(p^{e}\right)$ for $p^{e} \leq 5$ (Bhargava-Shankar 2013-2015).

Modelling short exact sequences

Recall that

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow Ш(E / K)[n] \rightarrow 0 .
$$

Modelling short exact sequences

Recall that

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow \amalg(E / K)[n] \rightarrow 0
$$

Setting $n=p^{e}$ and taking direct limits gives

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(E / K) \rightarrow Ш(E / K)\left[p^{\infty}\right] \rightarrow 0 .
$$

Modelling short exact sequences

Recall that

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow \amalg(E / K)[n] \rightarrow 0
$$

Setting $n=p^{e}$ and taking direct limits gives

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(E / K) \rightarrow \amalg(E / K)\left[p^{\infty}\right] \rightarrow 0
$$

Randomly choosing two MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z}_{p}\right)^{2 n}$ gives

$$
0 \rightarrow \mathcal{R} \rightarrow \mathcal{S} \rightarrow \mathcal{T} \rightarrow 0
$$

where $\mathcal{R}=\left(S_{1} \cap S_{2}\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $\mathcal{S}=\left(S_{1} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cap\left(S_{2} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.

Modelling short exact sequences

Recall that

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow \amalg(E / K)[n] \rightarrow 0
$$

Setting $n=p^{e}$ and taking direct limits gives

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(E / K) \rightarrow \amalg(E / K)\left[p^{\infty}\right] \rightarrow 0
$$

Randomly choosing two MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z}_{p}\right)^{2 n}$ gives

$$
0 \rightarrow \mathcal{R} \rightarrow \mathcal{S} \rightarrow \mathcal{T} \rightarrow 0
$$

where $\mathcal{R}=\left(S_{1} \cap S_{2}\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $\mathcal{S}=\left(S_{1} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cap\left(S_{2} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.

- Both $\lim _{\longrightarrow} \mathcal{S}_{p^{e}}(E / K)$ and \mathcal{S} are compatible with p^{e}-parts.

Modelling short exact sequences

Recall that

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow \amalg(E / K)[n] \rightarrow 0
$$

Setting $n=p^{e}$ and taking direct limits gives

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(E / K) \rightarrow \amalg(E / K)\left[p^{\infty}\right] \rightarrow 0
$$

Randomly choosing two MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z}_{p}\right)^{2 n}$ gives

$$
0 \rightarrow \mathcal{R} \rightarrow \mathcal{S} \rightarrow \mathcal{T} \rightarrow 0
$$

where $\mathcal{R}=\left(S_{1} \cap S_{2}\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $\mathcal{S}=\left(S_{1} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cap\left(S_{2} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.
\rightarrow Both $\lim _{\longrightarrow} \mathcal{S}_{p^{e}}(E / K)$ and \mathcal{S} are compatible with p^{e}-parts.

- Both $\amalg(E / K)\left[p^{\infty}\right]$ and \mathcal{T} are finite with an alternating pairing.

Modelling short exact sequences

Recall that

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow \amalg(E / K)[n] \rightarrow 0
$$

Setting $n=p^{e}$ and taking direct limits gives

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(E / K) \rightarrow \amalg(E / K)\left[p^{\infty}\right] \rightarrow 0
$$

Randomly choosing two MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z}_{p}\right)^{2 n}$ gives

$$
0 \rightarrow \mathcal{R} \rightarrow \mathcal{S} \rightarrow \mathcal{T} \rightarrow 0
$$

where $\mathcal{R}=\left(S_{1} \cap S_{2}\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $\mathcal{S}=\left(S_{1} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cap\left(S_{2} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.
\rightarrow Both $\lim _{\longrightarrow} \mathcal{S}_{p^{e}}(E / K)$ and \mathcal{S} are compatible with p^{e}-parts.

- Both $\amalg(E / K)\left[p^{\infty}\right]$ and \mathcal{T} are finite with an alternating pairing.
- Both $E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and \mathcal{R} satisfy the rank distribution conjecture.

Modelling short exact sequences

Recall that

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(E / K) \rightarrow \amalg(E / K)[n] \rightarrow 0
$$

Setting $n=p^{e}$ and taking direct limits gives

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(E / K) \rightarrow \amalg(E / K)\left[p^{\infty}\right] \rightarrow 0
$$

Randomly choosing two MTIDS's $S_{1}, S_{2} \subseteq\left(\mathbb{Z}_{p}\right)^{2 n}$ gives

$$
0 \rightarrow \mathcal{R} \rightarrow \mathcal{S} \rightarrow \mathcal{T} \rightarrow 0
$$

where $\mathcal{R}=\left(S_{1} \cap S_{2}\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and $\mathcal{S}=\left(S_{1} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cap\left(S_{2} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$.

- Both $\underline{l i m}_{\rightarrow} \mathcal{S}_{p^{e}}(E / K)$ and \mathcal{S} are compatible with p^{e}-parts.
- Both $\amalg(E / K)\left[p^{\infty}\right]$ and \mathcal{T} are finite with an alternating pairing.
- Both $E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}$ and \mathcal{R} satisfy the rank distribution conjecture.
- Variant for quadratic twist families is known for $p=2$ (Smith 2020).

Modelling Tate-Shafarevich groups

The rank distribution conjecture gives

$$
\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=0\right)=\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=1\right)=\frac{1}{2} .
$$

Modelling Tate-Shafarevich groups

The rank distribution conjecture gives

$$
\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=0\right)=\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=1\right)=\frac{1}{2}
$$

If $r \geq 2$, then

$$
\left\{S_{1}, S_{2} \subseteq \mathbb{Z}_{p}^{2 n} \mid \mathrm{rk}_{\mathbb{Z}_{\rho}}\left(S_{1} \cap S_{2}\right)=r\right\}
$$

has measure zero as $n \rightarrow \infty$.

Modelling Tate-Shafarevich groups

The rank distribution conjecture gives

$$
\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=0\right)=\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=1\right)=\frac{1}{2}
$$

If $r \geq 2$, then

$$
\left\{S_{1}, S_{2} \subseteq \mathbb{Z}_{p}^{2 n} \mid \mathrm{rk}_{\mathbb{Z}_{\rho}}\left(S_{1} \cap S_{2}\right)=r\right\}
$$

has measure zero as $n \rightarrow \infty$.

Instead choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \operatorname{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2,
$$ and let $n \rightarrow \infty$.

Modelling Tate-Shafarevich groups

The rank distribution conjecture gives

$$
\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=0\right)=\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=1\right)=\frac{1}{2}
$$

If $r \geq 2$, then

$$
\left\{S_{1}, S_{2} \subseteq \mathbb{Z}_{p}^{2 n} \mid \mathrm{rk}_{\mathbb{Z}_{\rho}}\left(S_{1} \cap S_{2}\right)=r\right\}
$$

has measure zero as $n \rightarrow \infty$.

Instead choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \operatorname{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2,
$$

and let $n \rightarrow \infty$. Use distribution of tors $(\operatorname{coker} M)$ to model \mathcal{T}.

Modelling Tate-Shafarevich groups

The rank distribution conjecture gives

$$
\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=0\right)=\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=1\right)=\frac{1}{2}
$$

If $r \geq 2$, then

$$
\left\{S_{1}, S_{2} \subseteq \mathbb{Z}_{p}^{2 n} \mid \mathrm{rk}_{\mathbb{Z}_{\rho}}\left(S_{1} \cap S_{2}\right)=r\right\}
$$

has measure zero as $n \rightarrow \infty$.

Instead choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \operatorname{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2,
$$

and let $n \rightarrow \infty$. Use distribution of tors(coker M) to model \mathcal{T}.

- Coincides with original $\mathbb{Z}_{p}^{2 n}$ distribution for \mathcal{T} for rank zero and one.

Modelling Tate-Shafarevich groups

The rank distribution conjecture gives

$$
\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=0\right)=\mathbb{P}\left(\mathrm{rk}_{\mathbb{Z}_{p}}\left(S_{1} \cap S_{2}\right)=1\right)=\frac{1}{2}
$$

If $r \geq 2$, then

$$
\left\{S_{1}, S_{2} \subseteq \mathbb{Z}_{p}^{2 n} \mid \mathrm{rk}_{\mathbb{Z}_{\rho}}\left(S_{1} \cap S_{2}\right)=r\right\}
$$

has measure zero as $n \rightarrow \infty$.

Instead choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \operatorname{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2,
$$

and let $n \rightarrow \infty$. Use distribution of tors(coker M) to model \mathcal{T}.

- Coincides with original $\mathbb{Z}_{p}^{2 n}$ distribution for \mathcal{T} for rank zero and one.
- Coincides with Delaunay's distribution for $\amalg(E / \mathbb{Q})\left[p^{\infty}\right]$ (Delaunay-Jouhet 2000-2014).

Modelling ranks

Instead of choosing M randomly from

$$
\left\{M \in \mathrm{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \mathrm{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2,
$$

Modelling ranks

Instead of choosing M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \mathrm{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2
$$

choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M\right\}, \quad n \equiv r \quad \bmod 2,
$$

and use distribution of $\mathrm{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)$ to model r.

Modelling ranks

Instead of choosing M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \mathrm{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2
$$

choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M\right\}, \quad n \equiv r \quad \bmod 2,
$$

and use distribution of $\mathrm{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)$ to model r.

- Measure zero locus.

Modelling ranks

Instead of choosing M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \mathrm{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \bmod 2
$$

choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M\right\}, \quad n \equiv r \bmod 2,
$$

and use distribution of $\mathrm{rk}_{\mathbb{Z}_{p}}(\operatorname{ker} M)$ to model r.

- Measure zero locus.
- Alternating matrices have even rank.

Modelling ranks

Instead of choosing M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M, \text { rk }_{\mathbb{Z}_{p}}(\operatorname{ker} M)=r\right\}, \quad n \equiv r \quad \bmod 2
$$

choose M randomly from

$$
\left\{M \in \operatorname{Mat}_{n} \mathbb{Z}_{p} \mid M^{\top}=-M\right\}, \quad n \equiv r \quad \bmod 2
$$

and use distribution of $r \mathrm{k}_{\mathbb{Z}_{p}}(\operatorname{ker} M)$ to model r.

- Measure zero locus.
- Alternating matrices have even rank.

Need a more refined model.

Modelling ranks

How to model an elliptic curve E over \mathbb{Q} of height h ?

Modelling ranks

How to model an elliptic curve E over \mathbb{Q} of height h ?

- Choose functions $X: \mathbb{N} \rightarrow \mathbb{R}$ and $Y: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
X(x)^{Y(x)}=x^{\frac{1}{12}+o(1)}, \quad x \rightarrow \infty .
$$

Modelling ranks

How to model an elliptic curve E over \mathbb{Q} of height h ?

- Choose functions $X: \mathbb{N} \rightarrow \mathbb{R}$ and $Y: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
X(x)^{Y(x)}=x^{\frac{1}{12}+o(1)}, \quad x \rightarrow \infty .
$$

- Choose n randomly from $\{\lceil Y(h)\rceil,\lceil Y(h)\rceil+1\}$.

Modelling ranks

How to model an elliptic curve E over \mathbb{Q} of height h ?

- Choose functions $X: \mathbb{N} \rightarrow \mathbb{R}$ and $Y: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
X(x)^{Y(x)}=x^{\frac{1}{12}+o(1)}, \quad x \rightarrow \infty .
$$

- Choose n randomly from $\{\lceil Y(h)\rceil,\lceil Y(h)\rceil+1\}$.
- Choose M randomly from

$$
\left\{M \in M a t_{n} \mathbb{Z} \mid M^{\top}=-M, M_{i j} \leq X(h)\right\} .
$$

Modelling ranks

How to model an elliptic curve E over \mathbb{Q} of height h ?

- Choose functions $X: \mathbb{N} \rightarrow \mathbb{R}$ and $Y: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
X(x)^{Y(x)}=x^{\frac{1}{12}+o(1)}, \quad x \rightarrow \infty .
$$

- Choose n randomly from $\{\lceil Y(h)\rceil,\lceil Y(h)\rceil+1\}$.
- Choose M randomly from

$$
\left\{M \in M a t_{n} \mathbb{Z} \mid M^{\top}=-M, M_{i j} \leq X(h)\right\} .
$$

- Model $\amalg(E / \mathbb{Q})$ by tors(coker $M)$ and $r k(E / \mathbb{Q})$ by $\mathrm{rk}_{\mathbb{Z}}(\operatorname{ker} M)$.

Modelling ranks

How to model an elliptic curve E over \mathbb{Q} of height h ?

- Choose functions $X: \mathbb{N} \rightarrow \mathbb{R}$ and $Y: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
X(x)^{Y(x)}=x^{\frac{1}{12}+o(1)}, \quad x \rightarrow \infty .
$$

- Choose n randomly from $\{\lceil Y(h)\rceil,\lceil Y(h)\rceil+1\}$.
- Choose M randomly from

$$
\left\{M \in M a t_{n} \mathbb{Z} \mid M^{\top}=-M, M_{i j} \leq X(h)\right\} .
$$

- Model $\amalg(E / \mathbb{Q})$ by tors(coker $M)$ and $r k(E / \mathbb{Q})$ by $\mathrm{rk}_{\mathbb{Z}}(\operatorname{ker} M)$.

Conditions are chosen such that the average size of

$$
\# \operatorname{coker}_{0}^{\prime} M= \begin{cases}\# \operatorname{tors}(\operatorname{coker} M) & \mathrm{rk}_{\mathbb{Z}}(\operatorname{ker} M)=0 \\ 0 & \mathrm{rk}_{\mathbb{Z}}(\operatorname{ker} M)>0\end{cases}
$$

is $h^{1 / 12+o(1)}$.

Modelling ranks

How to model an elliptic curve E over \mathbb{Q} of height h ?

- Choose functions $X: \mathbb{N} \rightarrow \mathbb{R}$ and $Y: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
X(x)^{Y(x)}=x^{\frac{1}{12}+o(1)}, \quad x \rightarrow \infty .
$$

- Choose n randomly from $\{\lceil Y(h)\rceil,\lceil Y(h)\rceil+1\}$.
- Choose M randomly from

$$
\left\{M \in M a t_{n} \mathbb{Z} \mid M^{\top}=-M, M_{i j} \leq X(h)\right\} .
$$

- Model $\amalg(E / \mathbb{Q})$ by tors(coker $M)$ and $r k(E / \mathbb{Q})$ by $\mathrm{rk}_{\mathbb{Z}}(\operatorname{ker} M)$.

Conditions are chosen such that the average size of

$$
\# \operatorname{coker}_{0}^{\prime} M= \begin{cases}\# \operatorname{tors}(\operatorname{coker} M) & \mathrm{rk}_{\mathbb{Z}}(\operatorname{ker} M)=0 \\ 0 & \mathrm{rk}_{\mathbb{Z}}(\operatorname{ker} M)>0\end{cases}
$$

is $h^{1 / 12+o(1)}$. The same is predicted for $\amalg(E / \mathbb{Q})$ by strong BSD.

Modelling ranks

Denote the model for $\mathrm{rk}(E / \mathbb{Q})$ by $\mathrm{rk}^{\prime}(E / \mathbb{Q})$.

Modelling ranks

Denote the model for $\mathrm{rk}(E / \mathbb{Q})$ by $\mathrm{rk}^{\prime}(E / \mathbb{Q})$.

Theorem (Poonen et al)
The following hold with probability 1.

$$
\begin{gathered}
\#\left\{E \in \mathcal{E}(\mathbb{Q}) \mid \mathfrak{h}(E) \leq h, \operatorname{rk}^{\prime}(E / \mathbb{Q})=0\right\}=h^{20 / 24+o(1)} \\
\#\left\{E \in \mathcal{E}(\mathbb{Q}) \mid \mathfrak{h}(E) \leq h, \operatorname{rk}^{\prime}(E / \mathbb{Q})=1\right\}=h^{20 / 24+o(1)} \\
\#\left\{E \in \mathcal{E}(\mathbb{Q}) \mid \mathfrak{h}(E) \leq h, \operatorname{rk}^{\prime}(E / \mathbb{Q}) \geq 2\right\}=h^{19 / 24+o(1)} \\
\vdots \\
\#\left\{E \in \mathcal{E}(\mathbb{Q}) \mid \mathfrak{h}(E) \leq h, \operatorname{rk}^{\prime}(E / \mathbb{Q}) \geq 20\right\}=h^{1 / 24+o(1)} \\
\#\left\{E \in \mathcal{E}(\mathbb{Q}) \mid \mathfrak{h}(E) \leq h, \operatorname{rk}^{\prime}(E / \mathbb{Q}) \geq 21\right\} \leq h^{\circ(1)} \\
\#\left\{E \in \mathcal{E}(\mathbb{Q}) \mid \mathrm{rk}^{\prime}(E / \mathbb{Q})>21\right\} \text { is finite }
\end{gathered}
$$

THANK YOU

[^0]: ${ }^{1}$ partially based on the VaNTAGe seminar on 'Heuristics for the arithmetic of elliptic curves' by Bjorn Poonen on 1 September 2020

[^1]: ${ }^{2}$ B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer groups'. In: J. Amer. Math. Soc 25 (2012)
 ${ }^{3}$ M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves'. In: Camb. J. Math. 3 (2015)
 ${ }^{4}$ J. Park, B. Poonen, J. Voight and M. Wood. 'A heuristic for boundedness of ranks of elliptic curves'. In: J. Eur. Math. Soc (2019)

[^2]: ${ }^{2}$ B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer groups'. In: J. Amer. Math. Soc 25 (2012)
 ${ }^{3}$ M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves'. In: Camb. J. Math. 3 (2015)
 ${ }^{4}$ J. Park, B. Poonen, J. Voight and M. Wood. 'A heuristic for boundedness of ranks of elliptic curves'. In: J. Eur. Math. Soc (2019)

[^3]: ${ }^{2}$ B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer groups'. In: J. Amer. Math. Soc 25 (2012)
 ${ }^{3}$ M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves'. In: Camb. J. Math. 3 (2015)
 ${ }^{4}$ J. Park, B. Poonen, J. Voight and M. Wood. 'A heuristic for boundedness of ranks of elliptic curves'. In: J. Eur. Math. Soc (2019)

[^4]: ${ }^{2}$ B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer groups'. In: J. Amer. Math. Soc 25 (2012)
 ${ }^{3}$ M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves'. In: Camb. J. Math. 3 (2015)
 ${ }^{4}$ J. Park, B. Poonen, J. Voight and M. Wood. 'A heuristic for boundedness of ranks of elliptic curves'. In: J. Eur. Math. Soc (2019)

[^5]: ${ }^{2}$ B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer groups'. In: J. Amer. Math. Soc 25 (2012)
 ${ }^{3}$ M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves'. In: Camb. J. Math. 3 (2015)
 ${ }^{4}$ J. Park, B. Poonen, J. Voight and M. Wood. 'A heuristic for boundedness of ranks of elliptic curves'. In: J. Eur. Math. Soc (2019)

