Rank heuristics for elliptic curves !

David Ang
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Lpartially based on the VaNTAGe seminar on 'Heuristics for the arithmetic of
elliptic curves’ by Bjorn Poonen on 1 September 2020
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Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil )
E(K) is a finitely generated abelian group of the form

E(K) = tors(E/K) @ Z<E/K),

The torsion subgroup tors(E/K) is effectively computable.

Theorem (Lutz-Nagell)
If (x,y) € tors(E/Q), then y € Z and either y = 0 or y? | A(E/Q).

Theorem (Mazur, Kamienny, Merel)
There are finitely many possibilities for tors(E /K).
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Elliptic curves

Let E be an elliptic curve over a number field K.

Theorem (Mordell-Weil )
E(K) is a finitely generated abelian group of the form

E(K) = tors(E/K) @ Z<E/K),

The rank rk(E/K) is computationally harder and more mysterious.

Conjecture (Birch-Swinnerton-Dyer)

If K =Q, then
ords—1 L(E,s) = rk(E/Q).

Theorem (Kolyvagin)

BSD holds for modular elliptic curves with analytic rank zero and one.
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Rank distribution conjecture

How is the rank distributed?
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Rank distribution conjecture

How is the rank distributed?

Consider the set £(Q) of unique minimal representatives of isomorphism
classes of elliptic curves over Q, ordered by the height function

h(E : y? = x> + Ax + B) = max(4|A]*,27|B[?).
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Rank distribution conjecture
How is the rank distributed?

Consider the set £(Q) of unique minimal representatives of isomorphism
classes of elliptic curves over Q, ordered by the height function

h(E : y? = x> + Ax + B) = max(4|A]*,27|B[?).

Conjecture (Rank distribution)

The average rank of £(Q) is 3.

Theorem (Bhargava-Shankar 2015)

The average rank of £(Q) is at most &.

Combining these shows that BSD holds for a positive proportion of £(Q)
(Kolyvagin 1989, Breuil-Conrad-Diamond-Taylor 2001, Nekova¥ 2009,
Dokchitser-Dokchitser 2010, Skinner-Urban 2015).
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Rank boundedness conjecture

Is the rank bounded?
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Rank boundedness conjecture

Is the rank bounded? Probably not...

Conjecture (Rank boundedness)
There are E € £(Q) of arbitrarily large rank.

Theorem (Shafarevich-Tate 1967, Ulmer 2002)
There are E € E(F,(T)) of arbitrarily large rank.

Theorem (Elkies 2006)
There is E € £(Q) with rank at least 28.

Theorem (Elkies-Klagsbrun 2020)
There is E € £(Q) with rank exactly 20.

Many proponents of this (Cassels 1966, Tate 1974, Mestre 1982,
Silverman 1986, Brumer 1992, Ulmer 2002, Farmer-Gonek-Hughes 2007).
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Rank boundedness conjecture
Is the rank bounded? Probably!

Conjecture (Poonen et al 2 3 %)
There are finitely many E € £(Q) with rank greater than 21.

2B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer
groups’. In: J. Amer. Math. Soc 25 (2012)

3M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the
distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves’'.
In: Camb. J. Math. 3 (2015)

4J. Park, B. Poonen, J. Voight and M. Wood. 'A heuristic for boundedness of
ranks of elliptic curves’. In: J. Eur. Math. Soc (2019)
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Rank boundedness conjecture

Is the rank bounded? Probably!
Conjecture (Poonen et al 2 3 %)
There are finitely many E € £(Q) with rank greater than 21.

» Model p¢-Selmer groups using intersection of quadratic submodules.
» Model Tate-Shafarevich groups using matrices with a fixed rank.

» Model the Mordell-Weil rank using matrices without fixing the rank.

A few others also predict boundedness (Néron 1950, Honda 1960,
Rubin-Silverberg 2000, Granville 2006, Watkins 2015).

2B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer
groups’. In: J. Amer. Math. Soc 25 (2012)

3M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the
distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves’'.
In: Camb. J. Math. 3 (2015)

4J. Park, B. Poonen, J. Voight and M. Wood. 'A heuristic for boundedness of

ranks of elliptic curves’. In: J. Eur. Math. Soc (2019)
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.
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Let E be an elliptic curve over a number field K.
Multiplication by n € NT gives

0—>E[n]—>Eﬂ>E—>O.
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The Selmer and Tate-Shafarevich groups
Let E be an elliptic curve over a number field K.

Multiplication by n € NT gives

0—>E[n]—>Eﬂ>E—>O.

Applying Gal(K/K) cohomology gives

0 — E(K)[n] — E(K) — E(K)

HY(K, E[n]) + HY(K,E) » HY(K,E) » ....
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The Selmer and Tate-Shafarevich groups
Let E be an elliptic curve over a number field K.

Multiplication by n € NT gives

0—>E[n]—>Eﬂ>E—>O.
Applying Gal(K/K) cohomology gives

0 — E(K)[n] — E(K) — E(K)

HY(K, E[n]) + H'(K,E) > H\(K,E) » ....
Truncating at HY(K, E[n]) gives

0 — E(K)/n —— HY(K, E[n]) —— HY(K,E)[n] —0 .
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a short exact sequence

0 — E(K)/n —— HY(K, E[n]) —— H(K, E)[n] — 0 .
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There are short exact sequences

0 — E(K)/n —— HY(K, E[n]) —— H(K, E)[n] — 0 .

0 — E(K,)/n — HYK,,E[n]) — H(K,,E)[n] — 0 .
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There are short exact sequences

0 — E(K)/n —— HY(K, E[n]) —— H(K, E)[n] — 0 .

0~ [[E(K)/n = [T H"(Ko, Eln]) = [] H(Kv. E)[n] =+ 0 .
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

0 — E(K)/n —— HY(K,E[n]) —— H(K,E)[n] — 0

| | |

0~ HE )/n > HHl K,, E[n]) + HHl K,,E)[n] - 0
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

0 — E(K)/n —— HY(K,E[n]) —— H(K,E)[n] — 0

| Lo,

0~ HE )/ = HHl K,, E[n]) + HHl K,,E)[n] - 0

The n-Selmer group is
So(E/K) = ker(o : HY(K, E[n]) — [1, H*(K,, E)[n]).

Exactness gives
S,(E/K)/ker X = imk Nim \.
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The Selmer and Tate-Shafarevich groups

Let E be an elliptic curve over a number field K.

There is a row-exact commutative diagram

0 — E(K)/n —— HY(K,E[n]) —— H(K,E)[n] — 0

| |

0~ HE )/ = HHl K,, E[n]) + HHl K,,E)[n] - 0

The Tate-Shafarevich group is
HI(E/K) = ker(r : H'(K, E) — [[, H'(K.,, E)).
There is an exact sequence

0 — E(K)/n — Sa(E/K) — II(E/K)[n] — 0.
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Consider (Z/p®)?", equipped with hyperbolic quadratic form
n
(X17 sy Xny Y1y e 7yn) = inyiv
i=1

with two MTIDS's (Z/p®)" @ 0" and 0" @ (Z/p°)".
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Consider (Z/p®)?", equipped with hyperbolic quadratic form
n
(Xty ey Xns Y1y e oy Yn) > ZX,-y,-,
i=1

with two MTIDS's (Z/p®)" @ 0" and 0" @ (Z/p°)".

The result was known for a finite-dimensional vector space over F,
(Colliot-Thélene-Skorobogatov-Swinnerton-Dyer 2002).
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Proof (Sketch).
Recall that S,(E/K)/ker A =2 imkNim A,
1. Construct the local non-degenerate quadratic module.

> Construct © such that 0 — K, — © — E[n] — 0.

» Construct Obk, : H*(K,, E[n]) — BrK, — Q/Z.

> Prove (-, )ob,, = [-;7] oU, and deduce Oby, is a quadratic form.
» Deduce non-degeneracy with local arithmetic duality.
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Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Proof (Sketch).
Recall that S,(E/K)/ker A =2 imkNim A,
1. Construct the local non-degenerate quadratic module.

2. Prove imk and im A are maximal totally isotropic.
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Proof (Sketch).

Recall that S,(E/K)/ker A =2 imkNim A,
1. Construct the local non-degenerate quadratic module.
2. Prove imk and im A are maximal totally isotropic.

> Use basic properties of Brauer-Severi diagrams to redefine Oby, .
> Define M =[] ,H (K., E[n]) and q =) invk, 0 Obk, : M — Q/Z.
» Conclude by B-S diagrams, class field theory, and arithmetic duality.
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Proof (Sketch).

Recall that S,(E/K)/ker A =2 imkNim A,
1. Construct the local non-degenerate quadratic module.
2. Prove imk and im A are maximal totally isotropic.
3. Prove imx and im X are direct summands.

> Use infinite group theory to characterise direct summands in terms of
divisibility-preserving maps and apply global arithmetic duality.
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.
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2. Prove imk and im A are maximal totally isotropic.
3. Prove imx and im \ are direct summands.

4. Attain good criterion for ker A = 0 when n = p€.
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Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
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> Use Chebotarev's density theorem to reduce to HZ(im pgps, E[n]) and
apply inflation-restriction repeatedly to reduce to SL2(Z/n).
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Proof (Sketch).
Recall that S,(E/K)/ker A =2 imkNim A,
1. Construct the local non-degenerate quadratic module.
2. Prove imk and im A are maximal totally isotropic.
3. Prove imx and im \ are direct summands.
4

. Attain good criterion for ker A = 0 when n = p€.

> Use Chebotarev's density theorem to reduce to HZ(im pgps, E[n]) and
apply inflation-restriction repeatedly to reduce to SL2(Z/n).

> Extract assumption SL»(Z/n) < im pgpy and justify its ubiquity using
Hilbert's irreducibility theorem and n-division polynomials. [J
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Conjecture

The distribution of Spe(E/Q) coincides with the distribution of S N S,
for two randomly chosen MTIDS’s S1, S, C (Z/p®)*™ as n — oo.
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Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Conjecture
The distribution of Spe(E/Q) coincides with the distribution of S N S,
for two randomly chosen MTIDS's Sy, S, C (Z/p®)?" as n — oco.

» Variant for function fields is known (Feng-Landesman-Rains 2020).

» Variant for quadratic twist families over Q is known for p¢ =2
(Heath-Brown 1994, Swinnerton-Dyer 2008, Kane 2013).
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Modelling p®-Selmer groups

Theorem

For almost all E € £(K), the p®-Selmer group Spe(E/K) is the
intersection of two maximal totally isotropic direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Conjecture
The distribution of Spe(E/Q) coincides with the distribution of S N S,
for two randomly chosen MTIDS's Sy, S, C (Z/p®)?" as n — oco.

» Variant for function fields is known (Feng-Landesman-Rains 2020).

» Variant for quadratic twist families over Q is known for p¢ =2
(Heath-Brown 1994, Swinnerton-Dyer 2008, Kane 2013).

> Average of #(51 N S,) is 01(p®), and average of #S,:(E/Q) is
o1(p®) for p¢ < 5 (Bhargava-Shankar 2013-2015).
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Modelling short exact sequences

Recall that

0 — E(K)/n — Sa(E/K) — II(E/K)[n] — 0.
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Modelling short exact sequences

Recall that
0— E(K)/n— S,(E/K) — II(E/K)[n] — 0.
Setting n = p® and taking direct limits gives

0~ E(K) ® Qp/Zp — lim Spe(E/K) — ILI(E/K)[p™] — 0.

Randomly choosing two MTIDS's Sy, S, C (Z,)?" gives
0O->R—-S8—>T—0,

where R = (51N S) @ Qp/Zp and S = (51 @ Qp/Z,) N (52 @ Qp/Zy).
> Both lim_§ <(E/K) and S are compatible with p®-parts.
» Both III(E/K)[p>°] and T are finite with an alternating pairing.
» Both E(K) ® Qp/Z, and R satisfy the rank distribution conjecture.
» Variant for quadratic twist families is known for p = 2 (Smith 2020).
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Modelling Tate-Shafarevich groups
The rank distribution conjecture gives

1
P(rkz,(S11 52) = 0) = P(rkz,($11 S) =1) = 5.
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Modelling Tate-Shafarevich groups
The rank distribution conjecture gives

1
P(rkz,(S11 52) = 0) = P(rkz,($11 S) =1) = 5.

If r > 2, then
{51, S, C Zin | I’kzp(sl n 52) = r}

has measure zero as n — oo.

Instead choose M randomly from
{M & Mat, Z, | MT = —M, rkz,(ker M) = r}, n=r mod 2,

and let n — oo. Use distribution of tors(coker M) to model T.

» Coincides with original Zf,” distribution for T for rank zero and one.

» Coincides with Delaunay's distribution for III(E/Q)[p>°]
(Delaunay-Jouhet 2000-2014).
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Modelling ranks

Instead of choosing M randomly from

{M € Mat,Z, | MT = —M, rkg,(ker M) = r}, n=r mod 2,
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Instead of choosing M randomly from
{M € Mat,Z, | MT = —M, rkg,(ker M) = r}, n=r mod 2,
choose M randomly from
{M e Mat,Z, | MT = —M}, n=r mod 2,

and use distribution of rkz, (ker M) to model r.

» Measure zero locus.

> Alternating matrices have even rank.
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Modelling ranks
Instead of choosing M randomly from
{M € Mat,Z, | MT = —M, rkg,(ker M) = r}, n=r mod 2,
choose M randomly from
{M e Mat,Z, | MT = —M}, n=r mod 2,

and use distribution of rkz, (ker M) to model r.
» Measure zero locus.

> Alternating matrices have even rank.

Need a more refined model.
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Modelling ranks

How to model an elliptic curve E over Q of height h?
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Modelling ranks

How to model an elliptic curve E over Q of height h?
» Choose functions X : N — R and Y : N — R such that

X(x)Y®) = X1172+0(1), X — 00.

» Choose n randomly from {[Y(h)],[Y(h)] + 1}.
» Choose M randomly from

{M € Mat, Z | MT = —M, M; < X(h)}.

» Model III(E/Q) by tors(coker M) and rk(E/Q) by rkz(ker M).

Conditions are chosen such that the average size of

# cokerg M = {#tors(coker M) rkz(ker M) =0

rkz(ker M) > 0

is h/12¢o(),
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Modelling ranks

How to model an elliptic curve E over Q of height h?
» Choose functions X : N — R and Y : N — R such that

X(x)Y®) = X1172+0(1), X — 00.

» Choose n randomly from {[Y(h)],[Y(h)] + 1}.
» Choose M randomly from

{M € Mat, Z | MT = —M, M; < X(h)}.

» Model III(E/Q) by tors(coker M) and rk(E/Q) by rkz(ker M).

Conditions are chosen such that the average size of

ker M)  rkg(ker M) =
#cokergM:{#tors(co er M) rkz(ker M) =0

rkz(ker M) > 0

is h/12+o(1) " The same is predicted for IIT(E/Q) by strong BSD.
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Modelling ranks
Denote the model for rk(E/Q) by rk'(E/Q).

84/86



Modelling ranks
Denote the model for rk(E/Q) by rk'(E/Q).

Theorem (Poonen et al)
The following hold with probability 1.

#{E € £(Q) | B(E) < h, K'(E/Q) = 0} = p*0/24+e)
#{E € £(Q) | H(E) < h, K (E/Q) =1} = p*0/24+)
#{E € £(Q) | H(E) < h, K (E/Q) > 2} = p19/24+e)

#{E € £(Q) | h(E) < h, 1K' (E/Q) > 20} = pt/24+e1)
#{E € £(Q) | h(E) < h, K'(E/Q) > 21} < p°W)
#{E € £(Q) | rk'(E/Q) > 21} is finite
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