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Introduction

The process of formalising mathematics is interesting for many reasons.
One important reason is to ensure that a mathematical argument is
sound and complete, as the standard literature may sometimes be hazy.

Alongside my PhD, I have been developing the algebraic foundations of
elliptic curves in the Lean 4 theorem prover, mostly in joint work with
Junyan Xu (Heidelberg), but with important contributions by Jinzhao
Pan (Tongji), Kevin Buzzard and Andrew Yang (Imperial), Michael Stoll
(Bayreuth), Peiran Wu (Leuven), Kenny Lau (unaffiliated), and others.

In my case, due to limitations of the algebraic geometry in Lean’s
mathematical library mathlib, we were forced to think outside the box.
In the process, we could generalise existing definitions to suit our needs,
and inadvertently discovered novel proofs of ancient results.
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Weierstrass curves

In 2021, Buzzard formalised a working definition of an elliptic curve in
terms of its Weierstrass model that is amenable for computation.

Definition

A Weierstrass curve CR over a commutative ring R with unity is a tuple
(a1, a2, a3, a4, a6) ∈ R5. Given CR , define

b2 := a21 + 4a2, b4 := 2a4 + a1a3, b6 := a23 + 4a6,

b8 := a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24, c4 := b22 − 24b4,

c6 := −b32 + 36b2b4 − 216b6, ∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6.

If ∆ ∈ R×, then CR is elliptic, and define j := c34/∆.

This recovers all elliptic curves over Spec(R) when Pic(R) = 0.
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Changes of variables

Any two Weierstrass equations of an elliptic curve are related by
(x , y) 7→ (u2x + r , u3y + u2sx + t) for some u ∈ R× and some r , s, t ∈ R.

Definition

A variable change is a tuple v = (u, r , s, t) ∈ R××R3. Given CR , define

v · CR := ( a1+2s
u , a2−sa1+3r−s2

u2 , a3+ra1+2t
u3 ,

a4−sa3+2ra2−(t+rs)a1+3r2−2st
u4 , a6+ra4+r2a2+r3−ta3−t2−rta1

u6 ).

If C ′
R = v · CR for some v ∈ R× × R3, then CR and C ′

R are isomorphic.

Pan formalised Silverman’s normal forms of CR when char(R) = 2, 3, as
well as a proof that CF s and C ′

F s are isomorphic over the separable
closure F s of a field F iff they have the same j . Recently, Lau formalised
the Tate normal form of CF when it has a point of order at least four.
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Affine coordinates

For an R-algebra A, the A-points on CR are given in affine coordinates.

Definition

An affine A-point on CR is a tuple (x , y) ∈ A2 that vanishes on

fCR
:= Y 2 + a1XY + a3Y − (X 3 + a2X

2 + a4X + a6).

It is nonsingular if its two partial derivatives generate A. A nonsingular
A-point on CR is either OCR

or a nonsingular affine A-point on CR .

Note that when CR is elliptic, all A-points on CR are nonsingular.

In this case, Stoll, Xu, and I formalised in 2024 that the functor of affine
points AffSchopR → Set is representable by Spec(R[X ,Y ]/(fCR

)).
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The group law

Addition on nonsingular F -points is given by explicit rational functions,
where associativity is known to be computationally difficult: generic
associativity involves an equality of polynomials with 26,082 terms!

Formalisation (A.–Xu, 2022)

The type of nonsingular F -points CF (F ) forms an additive abelian group.

It suffices to show that the homomorphism CF (F )→ Cl(F [X ,Y ]/(fCF
))

mapping (x , y) to [(X − x ,Y − y)] is injective. If it were not, then there
are polynomials f , g ∈ F [X ] such that (X − x ,Y − y) = (f + gY ). Then

deg(Nm(f + gY )) =

{
max(2 deg(f ), 2 deg(g) + 3),

dimF (F [X ,Y ]/(fCF
, f + gY )),

which give a contradiction.
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Miscellaneous results

I formalised some basic results for CF (F ):

CF (F ) ∼= C ′
F (F ) as additive groups when CF and C ′

F are isomorphic

the torsion subgroup CF (F )tor, including the statement of Mazur’s
torsion theorem, and the n-torsion subgroup CF (F )[n]

for a tower of finite Galois extensions L/K/F ,

CF (L)
Gal(L/K) ∼= CF (K ), CF (L)[n]

Gal(L/K) ∼= CF (K )[n]

Recently, Yang formalised a basic interface of singular Weierstrass curves.

Question (Yang, 2025)

Is there a clean description of CF (F ) when CF is not elliptic?

Silverman gives a complete description of CF when F is perfect.

David Kurniadi Angdinata London School of Geometry and Number Theory

Rational points on elliptic curves in Lean 7 / 14



Weierstrass equations Nonsingular points Torsion subgroups Arithmetic theory

The n-torsion subgroup

In 2023, I attempted to formalise the isomorphism CF (F
s)[n] ∼= (Z/nZ)2.

Formalisation (A.–Wu–Xu, 2025?)

If CF is elliptic and char(F ) ̸= ℓ, then TℓCF s ∼= Z2
ℓ as Zℓ[GF ]-modules.

Silverman defines polynomials ψn, ϕn, ωn ∈ F s [X ,Y ] and claims that
there is a computational proof for the multiplication-by-n formula

[n](x , y) =

(
ϕn(x)

ψ2
n(x)

,
ωn(x , y)

ψ3
n(x , y)

)
.

Computing deg(ϕn) = n2 and deg(ψ2
n) = n2 − 1, and proving that

(ϕn, ψ
2
n) = 1, imply that # ker[n] = n2, and the result follows formally.

The complete argument also recovers TℓCF s when char(F ) = ℓ.
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Projective coordinates

Definition

The weighted projective space Pw
R with weights w = (w0, . . . ,wn) is

{(x0, . . . , xn) ∈ Rn+1 : ⟨x0, . . . , xn⟩ = R}/R×,

with an R×-action given by u · (x0, . . . , xn) = (uw0x0, . . . , u
wnxn).

This is precisely ProjR[X0, . . . ,Xn]
w when Pic(R) = 0, and the natural

injection Pw
R → Pw

Frac(R) is bijective when R is a discrete valuation ring.

Definition

A nonsingular Jacobian A-point on CR is an element of P(2,3,1)
A that

vanishes in the (2, 3, 1)-weighted homogenisation f
(2,3,1)
CR

∈ R[X ,Y ,Z ] of
fCR

, such that its three partial derivatives generate A.
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Division polynomials

Definition

Given CR , the n-th division polynomial ψn ∈ R[X ,Y ] is given by

ψ0 := 0,

ψ1 := 1,

ψ2 := 2Y + a1X + a3,

ψ3 := 3X 4 + b2X
3 + 3b4X

2 + 3b6X + b8,

ψ4 := ψ2 · (2X 6+b2X
5+5b4X

4+10b6X
3+10b8X

2+(b2b8−b4b6)X+(b4b8−b2
6)),

ψ2n+1 := ψn+2ψ
3
n − ψn−1ψ

3
n+1,

ψ2n :=
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
,

ψ−n := −ψn.
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Numerator polynomials

Given ψn, the polynomials ϕn, ωn ∈ R[X ,Y ] are given by

ϕn := Xψ2
n − ψn−1ψn+1, ωn := 1

2 (ψ2n/ψn − a1ϕnψn − a3ψ
3
n).

It is not obvious that ωn ∈ R[X ,Y ]! In 2024, Xu showed that this reduces
to proving that ψn forms an elliptic sequence: for all n,m, r ∈ Z,

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

I think this is still not directly provable. Instead, Xu proved that ψn forms
an elliptic net in the sense of Stange: for all n,m, r , s ∈ Z,

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

Later, Xu gave a complete proof of the multiplication-by-n formula.
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The local theory

I believe it is possible to formalise much of the arithmetic foundations of
elliptic curves while the algebraic geometry in mathlib catches up.

When K is a global field, reduction modulo p is the homomorphism

CK (K ) ↪→ CK (Kp)
∼←− CK (Op) ↠ CK (κp).

Upon developing a theory of formal groups, it should be possible to
compute torsion subgroups via the Lutz–Nagell theorem, classify
reduction types, define the conductor for char(κp) ̸= 2, 3, prove the
Néron–Ogg–Shafarevich criterion, state Szpiro’s conjecture, etc.

Note that Tate’s algorithm was implemented by Best, Dahmen, and
Huriot-Tattegrain in 2023 before elliptic curves existed in Lean 4!
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The global theory

Much of the theory over a global field K now becomes accessible!

Isogenies can be defined in terms of their standard form when
char(F ) ̸= 2, 3, which opens the door to formalising basic facts
about HomF (CF ,C

′
F ), EndF (CF ), and AutF (CF ).

The ℓ-adic representations GK → Aut(TℓCK s ) can be glued together

to give an adelic representation GK → GL2(Ẑ).
Assuming modularity, the L-function and the Tamagawa number can
both be defined as products of local factors.

In 2022, I formalised a skeleton of the full Mordell–Weil theorem
over Q in Lean 3 via complete 2-descent, including explicit Galois
cohomology and näıve heights. Formalising this properly in Lean 4
naturally leads to the definitions of X(CK ), rk(CK ), and Reg(CK ).

All of these are part of the Birch and Swinnerton-Dyer conjecture!
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The Birch and Swinnerton-Dyer conjecture

Here is my blueprint for the Birch and Swinnerton-Dyer conjecture.

CK (Fq) ĈK (M)

CK (Kp) → CK (κp)

L(CK , s)

H1(GK ,CK )

Seln(CK )

#CK (K)/n < ∞

hK (P)

ĥCK (P)

CK (K) ∼= T ⊕ Zr

ords=1 L(CK , s) = r

cp(CK ) Reg(CK ) X(CK )

lim
s→1

L(CK , s)

(s − 1)r
=

Ω(CK ) · Reg(CK ) · X(CK ) ·
∏

p cp(CK )√
∆(K) · #T 2

CK (R) CK (C)

∫
CK

ωCK

Ω(CK )

David Kurniadi Angdinata London School of Geometry and Number Theory

Rational points on elliptic curves in Lean 14 / 14


	Weierstrass equations
	Nonsingular points
	Torsion subgroups
	Arithmetic theory

