

Sheaves, functors, and derived versions

Character sheaves

David Kurniadi Angdinata

University of East Anglia

Tuesday, 4 November 2025

Presheaves

Throughout, let R be a ring, and let X , Y , and Z be topological spaces. Then U and U_i (resp V and V_i) will be open sets of X (resp Y), and \mathcal{F} and \mathcal{F}_i (resp \mathcal{G} and \mathcal{G}_i) will be sheaves of R -modules on X (resp Y).

A **presheaf** (of R -modules on X) is a functor $\mathcal{F} : \mathbf{Top}(X)^{\text{op}} \rightarrow \mathbf{Mod}_R$. In other words, it associates every $U \in \mathbf{Top}(X)$ to some $\mathcal{F}(U) \in \mathbf{Mod}_R$, and for all $U_1, U_2 \in \mathbf{Top}(X)$ with $U_1 \subseteq U_2$, there are restrictions

$$(-)|_{U_1}^{U_2} : \mathcal{F}(U_1 \rightarrow U_2) : \mathcal{F}(U_2) \rightarrow \mathcal{F}(U_1),$$

such that

- ▶ $(-)|_{U_1}^{U_1} = \text{id}$, and
- ▶ $((-)|_{U_1}^{U_2})|_{U_2}^{U_3} = (-)|_{U_1}^{U_3}$ for all $U_3 \in \mathbf{Top}(X)$ with $U_2 \subseteq U_3$.

Let $\mathbf{PSh}(X, R)$ denote the category of presheaves (of R -modules on X).

Sheaves

A **sheaf** (of R -modules on X) is a presheaf $\mathcal{F} \in \mathbf{PSh}(X, R)$ such that, if $\{U_i\}_i$ is an open cover of $U \in \mathbf{Top}(X)$, then the (equaliser) sequence

$$0 \rightarrow \mathcal{F}(U) \xrightarrow{s \mapsto (s|_{U_i}^U)_i} \prod_i \mathcal{F}(U_i) \xrightarrow{\begin{matrix} (s_i \mapsto (s_i|_{U_i \cap U_j}^{U_i})_j)_i \\ (s_j \mapsto (s_j|_{U_i \cap U_j}^{U_j})_i)_j \end{matrix}} \prod_{i,j} \mathcal{F}(U_i \cap U_j)$$

is exact. In other words,

- S1** if $s \in \mathcal{F}(U)$ is such that $s|_{U_i}^U = 0$ for all i , then $s = 0$, and
- S2** if $s_i \in \mathcal{F}(U_i)$ and $s_j \in \mathcal{F}(U_j)$ are such that $s_i|_{U_i \cap U_j}^{U_i} = s_j|_{U_i \cap U_j}^{U_j}$ for all i and j , then there is some $s \in \mathcal{F}(U)$ such that $s|_{U_i}^U = s_i$ for all i .

Let $\mathbf{Sh}(X, R)$ denote the category of sheaves (of R -modules on X), and let $(-)^- : \mathbf{Sh}(X, R) \rightarrow \mathbf{PSh}(X, R)$ denote its natural forgetful functor.

Morphisms of sheaves

A **morphism** of (pre)sheaves (of R -modules on X) is a natural transformation $\phi : \mathcal{F}_1 \rightarrow \mathcal{F}_2$. In other words, it is a collection of R -linear maps $\phi_U : \mathcal{F}_1(U) \rightarrow \mathcal{F}_2(U)$ for each $U \in \mathbf{Top}(X)$, such that

$$\begin{array}{ccc} \mathcal{F}_1(U_1) & \xrightarrow{\phi_{U_1}} & \mathcal{F}_2(U_1) \\ (-)|_{U_2}^{U_1} \downarrow & & \downarrow (-)|_{U_2}^{U_1} \\ \mathcal{F}_1(U_2) & \xrightarrow{\phi_{U_2}} & \mathcal{F}_2(U_2). \end{array}$$

The **stalk** of \mathcal{F} at some $x \in X$ is the direct limit

$$\mathcal{F}_x := \varinjlim_{\substack{U \in \mathbf{Top}(X), \\ x \in U}} \mathcal{F}(U).$$

If \mathcal{F}_1 and \mathcal{F}_2 are sheaves, then ϕ is an isomorphism precisely if the induced morphism $\phi_x : \mathcal{F}_{1,x} \rightarrow \mathcal{F}_{2,x}$ is an isomorphism for each $x \in X$.

Examples of sheaves

Let X be a C^n -manifold over K/\mathbb{R} . For all $m \leq n$, there are sheaves

$$U \mapsto C^m(U, K).$$

Let X be a variety over $K = \overline{K}$. The **structure sheaf** is given by

$$\mathcal{O}_X : U \mapsto \{\text{regular functions } U \rightarrow K\}.$$

Let M be an R -module, and let $x \in X$. The **skyscraper sheaf** is given by

$$\underline{M}_x : U \mapsto \begin{cases} M & \text{if } x \in U, \\ 0 & \text{otherwise.} \end{cases}$$

On the other hand, the presheaf

$$\mathcal{F} : U \mapsto \{\text{bounded continuous functions } U \rightarrow \mathbb{R}\}$$

is not a sheaf.

Constant sheaves

Let M be an R -module. The constant sheaf \underline{M}_X is not just the presheaf $U \mapsto M$! Since \emptyset has an empty open cover $\{\underline{U}_i\}_{i \in \emptyset}$, all $s \in \underline{M}_X(\emptyset)$ vacuously satisfy $s|_{\underline{U}_i}^\emptyset = 0$ for all $i \in \emptyset$, so S1 says that $s = 0$. Thus

$$\underline{M}_X(\emptyset) = 0.$$

Let $U_1, U_2 \in \mathbf{Top}(X)$ be disjoint with $\underline{M}_X(U_1) = \underline{M}_X(U_2) = M$. If $s_1 \in \underline{M}_X(U_1)$ and $s_2 \in \underline{M}_X(U_2)$, then $s_1|_{U_1 \sqcap U_2}^{U_1} = s_2|_{U_1 \sqcap U_2}^{U_2} = 0$, so S2 gives some $s \in \underline{M}_X(U_1 \sqcup U_2)$ such that $s|_{U_1}^{U_1 \sqcup U_2} = s_1$ and $s|_{U_2}^{U_1 \sqcup U_2} = s_2$. Thus

$$\underline{M}_X(U_1 \sqcup U_2) = M \oplus M.$$

In other words, the **constant sheaf** is given by

$$\underline{M}_X : U \mapsto \{\text{continuous functions } U \rightarrow M\},$$

where M is given the discrete topology.

Sheafification

Let $\mathcal{F} \in \mathbf{PSh}(X, R)$. The **sheafification** of \mathcal{F} is the unique sheaf $\mathcal{F}^+ \in \mathbf{Sh}(X, R)$ satisfying the universal property

$$\begin{array}{ccc} \mathcal{F} & \xrightarrow{(-)^+} & \mathcal{F}^+ \\ & \searrow \forall \phi & \downarrow \exists! \phi^+ \\ & & \forall \mathcal{F}_0. \end{array}$$

This says that for any $\mathcal{F}_0 \in \mathbf{Sh}(X, R)$ and any $\phi : \mathcal{F} \rightarrow \mathcal{F}_0$, there is a unique $\phi^+ : \mathcal{F}^+ \rightarrow \mathcal{F}_0$ such that $\phi^+ \circ (-)^+ = \phi$.

In other words, $(-)^+ : \mathbf{PSh}(X, R) \rightarrow \mathbf{Sh}(X, R)$ is the **right adjoint** to the forgetful functor $(-)^- : \mathbf{Sh}(X, R) \rightarrow \mathbf{PSh}(X, R)$, in the sense that

$$\mathrm{Hom}_{\mathbf{Sh}(X, R)}(\mathcal{F}_1^+, \mathcal{F}_2) \cong \mathrm{Hom}_{\mathbf{PSh}(X, R)}(\mathcal{F}_1, \mathcal{F}_2^-),$$

so that $\mathcal{F}_x = \mathcal{F}_x^+$ for all $x \in X$.

Hom and tensor product

Grothendieck introduced a six-functor formalism for sheaves.

The **hom** $\mathcal{H}om(\mathcal{F}_1, \mathcal{F}_2) \in \mathbf{Sh}(X, R)$ is the sheaf

$$U \mapsto \mathcal{H}om_{\mathbf{Sh}(U, R)}(\mathcal{F}_1|_U, \mathcal{F}_2|_U).$$

The **tensor product** $\mathcal{F}_1 \otimes \mathcal{F}_2 \in \mathbf{Sh}(X, R)$ is the sheafification of

$$U \mapsto \mathcal{F}_1(U) \otimes_R \mathcal{F}_2(U).$$

Fact

- ▶ $\mathcal{H}om_{\mathbf{Sh}(X, R)}(\mathcal{F}_1 \otimes \mathcal{F}_2, \mathcal{F}_3) \cong \mathcal{H}om_{\mathbf{Sh}(X, R)}(\mathcal{F}_1, \mathcal{H}om(\mathcal{F}_2, \mathcal{F}_3)).$
- ▶ $\mathcal{F} \otimes \underline{R_X} \cong \mathcal{F}$ and $\mathcal{H}om(\underline{R_X}, \mathcal{F}) \cong \mathcal{F}$.
- ▶ If $x \in X$, then $(\mathcal{F}_1 \otimes \mathcal{F}_2)_x \cong \mathcal{F}_{1,x} \otimes_R \mathcal{F}_{2,x}$, but $\mathcal{H}om(\mathcal{F}_1, \mathcal{F}_2)_x \not\cong \mathcal{H}om(\mathcal{F}_{1,x}, \mathcal{F}_{2,x})$ in general.

Pullback and pushforward

Let $f : X \rightarrow Y$. The **pushforward** $f_* \mathcal{F} \in \mathbf{Sh}(Y, R)$ is the sheaf

$$V \mapsto \mathcal{F}(f^{-1}(V)).$$

The **pullback** $f^* \mathcal{G} \in \mathbf{Sh}(X, R)$ is the sheafification of

$$U \mapsto \varinjlim_{\substack{V \in \mathbf{Top}(Y), \\ f(U) \subseteq V}} \mathcal{G}(V).$$

Fact

- ▶ $\mathrm{Hom}_{\mathbf{Sh}(X, R)}(f^* \mathcal{G}, \mathcal{F}) \cong \mathrm{Hom}_{\mathbf{Sh}(Y, R)}(\mathcal{G}, f_* \mathcal{F})$.
- ▶ $f^* \underline{R_Y} = \underline{R_X}$ and $(f^* \mathcal{G})_x = \mathcal{G}_{f(x)}$ for all $x \in X$.
- ▶ If $\iota_y : \{y\} \hookrightarrow Y$ for some $y \in Y$, then $\iota_y^* \mathcal{G} = \underline{\mathcal{G}_{y, \{y\}}}$.
- ▶ If $\pi^x : X \twoheadrightarrow \{x\}$ for some $x \in X$, then $\pi^x_* \mathcal{F} = \underline{\mathcal{F}(X)}$.
- ▶ If $g : Y \rightarrow Z$, then $(g \circ f)_* = g_* \circ f_*$ and $(g \circ f)^* = f^* \circ g^*$.

Shriek pushforward

Recall that f is **proper** if it is universally closed, in the sense that $f \times \text{id} : X \times Z \rightarrow Y \times Z$ is closed for all Z . If X is locally compact Hausdorff, then f is proper iff $f^{-1}(Z)$ is compact for any compact $Z \subseteq Y$. The **shriek pushforward** $f_! \mathcal{F} \in \mathbf{Sh}(Y, R)$ is the sheaf

$$V \mapsto \{s \in \mathcal{F}(f^{-1}(V)) : f|_{\text{supp}(s)} \text{ is proper}\},$$

where $\text{supp}(s) := \{x \in X : s \neq 0 \text{ in } \mathcal{F}_x\}$ is closed.

Fact

- If $\iota : X \hookrightarrow Y$ is open, then $\text{Hom}_{\mathbf{Sh}(Y, R)}(\iota_! \mathcal{F}, \mathcal{G}) \cong \text{Hom}_{\mathbf{Sh}(X, R)}(\mathcal{F}, \iota^* \mathcal{G})$.
- If f is proper, such as when $f : X \hookrightarrow Y$ is closed, then $f_! = f_*$.
- If $\pi^x : X \twoheadrightarrow \{x\}$ for some $x \in X$, then

$$\underline{\pi_!^x \mathcal{F}} = \{s \in \mathcal{F}(X) : \text{supp}(s) \text{ is compact}\}.$$

- If $g : Y \rightarrow Z$ is separated, in the sense that the diagonal $Y \hookrightarrow Y \times_Z Y$ is closed, then $(g \circ f)_! = g_! \circ f_!$.

Locally closed inclusions

Assume that $\iota : X \hookrightarrow Y$ is locally closed. Then $\iota_! : \mathbf{Sh}(X, R) \rightarrow \mathbf{Sh}(Y, R)$ is **extension-by-zero**, where $\iota_! \mathcal{F} \in \mathbf{Sh}(Y, R)$ is the sheafification of

$$V \mapsto \begin{cases} \mathcal{F}(V \cap \iota(X)) & \text{if } V \cap \overline{\iota(X)} \subseteq \iota(X), \\ 0 & \text{otherwise,} \end{cases}$$

so its stalk at $y \in Y$ is

$$(\iota_! \mathcal{F})_y = \begin{cases} \mathcal{F}_y & \text{if } y \in \iota(X), \\ 0 & \text{otherwise.} \end{cases}$$

In this case, $\iota_!$ has a right adjoint **restriction-with-supports**

$\iota^! : \mathbf{Sh}(Y, R) \rightarrow \mathbf{Sh}(X, R)$, where $\iota^! \mathcal{G} \in \mathbf{Sh}(X, R)$ is the sheafification of

$$U \mapsto \varinjlim_{\substack{V \in \mathbf{Top}(Y), \\ V \cap \overline{\iota(X)} = \iota(U)}} \{s \in \mathcal{G}(V) : \text{supp}(s) \subseteq \iota(U)\},$$

so that $\iota^! = \iota^*$ whenever ι is open.

Classical derived functors

Since \mathbf{Mod}_R has enough injectives, $\mathbf{Sh}(X, R)$ also has enough injectives, so for any $\mathcal{F} \in \mathbf{Sh}(X, R)$, there is a **classical injective resolution**

$$0 \rightarrow \mathcal{F} \rightarrow \mathcal{I}^0 \xrightarrow{d^0} \mathcal{I}^1 \xrightarrow{d^1} \dots$$

Let $F : \mathbf{Sh}(X, R) \rightarrow \mathbf{Sh}(Y, R)$ be a functor. For each $i \in \mathbb{N}$, the **classical derived functor** $R^i F : \mathbf{Sh}(X, R) \rightarrow \mathbf{Sh}(Y, R)$ of F is given by

$$\mathcal{F} \mapsto H^i(0 \rightarrow F(\mathcal{I}^0) \xrightarrow{F(d^0)} F(\mathcal{I}^1) \xrightarrow{F(d^1)} \dots) := \ker F(d^i) / \text{im } F(d^{i-1}),$$

which is independent of the choice of classical injective resolution. For each $i \in \mathbb{Z}$, the **cohomology** of \mathcal{F} is

$$H^i(\mathcal{F}) := R^i F(\mathcal{F}).$$

If F is left exact, then $H^0(\mathcal{F}) = R^0 F(\mathcal{F}) = \ker F(d^0) = F(\mathcal{F})$. For instance, $\mathcal{H}om(\mathcal{F}, -)$, $\mathcal{H}om(-, \mathcal{F})$, f^* , f_* , $f_!$, $\iota_!$, and $\iota^!$ are all left exact, and f^* and $\iota_!$ (and $\mathcal{F} \otimes -$ and $- \otimes \mathcal{F}$ if \mathbf{Mod}_R is flat) are also right exact.

Complex category

Let \mathcal{A} be an abelian category. Let $C(\mathcal{A})$ denote the category whose objects are **chain complexes** A^\bullet for some $A^i \in \mathcal{A}$ given by

$$\dots \xrightarrow{d_A^{i-1}} A^i \xrightarrow{d_A^i} A^{i+1} \xrightarrow{d_A^{i+1}} \dots,$$

and whose morphisms are **chain maps** $\phi^\bullet : A^\bullet \rightarrow B^\bullet$ such that

$$\begin{array}{ccccccc} \dots & \xrightarrow{d_A^{i-1}} & A^i & \xrightarrow{d_A^i} & A^{i+1} & \xrightarrow{d_A^{i+1}} & \dots \\ & & \downarrow \phi^i & & \downarrow \phi^{i+1} & & \\ \dots & \xrightarrow{d_B^{i-1}} & B^i & \xrightarrow{d_B^i} & B^{i+1} & \xrightarrow{d_B^{i+1}} & \dots \end{array}$$

For each $i \in \mathbb{Z}$, the **cohomology** of a chain complex $A^\bullet \in \mathcal{A}$ is given by

$$H^i(A^\bullet) := \ker d^i / \text{im } d^{i-1}.$$

A chain map $\phi^\bullet : A^\bullet \rightarrow B^\bullet$ is a **quasi-isomorphism** if the induced morphisms $H^i(\phi^\bullet) : H^i(A^\bullet) \rightarrow H^i(B^\bullet)$ are isomorphisms for all $i \in \mathbb{Z}$.

Derived category

Let \mathcal{C} be a category. The **localisation** of \mathcal{C} with respect to a collection S of morphisms is a category $S^{-1}\mathcal{C}$ satisfying the universal property

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{S^{-1}} & S^{-1}\mathcal{C} \\ & \searrow \forall F & \downarrow \exists! S^{-1}F \\ & & \forall \mathcal{C}_0, \end{array}$$

where \mathcal{C}_0 is any category such that $F(\phi)$ is an isomorphism for all $\phi \in S$.

The **derived category** $D(\mathcal{A})$ of \mathcal{A} is the localisation of $C(\mathcal{A})$ with respect to quasi-isomorphisms. Furthermore, let $D^+(\mathcal{A})$ and $D^-(\mathcal{A})$ denote its subcategories such that $A^i = 0$ for sufficiently large or small $i \in \mathbb{Z}$ respectively, and let $D^b(\mathcal{A}) := D^+(\mathcal{A}) \cap D^-(\mathcal{A})$.

Similarly, let $C^*(\mathcal{A})$ denote the same for $C(\mathcal{A})$ for each of $* \in \{+, -, b\}$.

Derived functors

Assume that \mathcal{A} has enough injectives. Then for all $A^\bullet \in C(\mathcal{A})$, there is an **injective resolution** $I^\bullet \in C(\mathcal{A})$ with a quasi-isomorphism

$$A^\bullet \rightarrow I^\bullet.$$

Let $F : \mathcal{A} \rightarrow \mathcal{B}$ be a left exact functor between abelian categories. By abstract nonsense, it preserves quasi-isomorphisms on $C^+(\mathcal{A})$, so it defines a functor $F : D^+(\mathcal{A}) \rightarrow D^+(\mathcal{B})$. Furthermore, there is a **derived functor** $RF : D^+(\mathcal{A}) \rightarrow D^+(\mathcal{B})$ given by

$$A^\bullet \mapsto F(I^\bullet),$$

which recovers the classical derived functor for each $i \in \mathbb{Z}$ by

$$R^i F(A) = H^i(RF(A)).$$

If it is also right exact, then it preserves quasi-isomorphisms on $C^-(\mathcal{A})$, so it defines a functor $F : D(\mathcal{A}) \rightarrow D(\mathcal{B})$, and the derived functor $RF : D(\mathcal{A}) \rightarrow D(\mathcal{B})$ satisfies $RF(A^\bullet) = 0$ for all $A^\bullet \in \mathcal{A}$.

Derived sheaf functors

Let $D^*(X, R) := D^*(\mathbf{Sh}(X, R))$, which has non-zero derived functors

$$R\mathcal{H}om(\mathcal{F}, -), \ R\mathcal{H}om(-, \mathcal{F}), \ Rf_*, \ Rf_!, \ \iota^!.$$

The **shriek pullback** $f^! : D^+(Y, R) \rightarrow D^+(X, R)$ is the right adjoint of $Rf_! : D^+(X, R) \rightarrow D^+(Y, R)$, which exists when X and Y are locally compact Hausdorff. If $\iota : X \hookrightarrow Y$ is locally closed, then this coincides with $R\iota^! : D^+(Y, R) \rightarrow D^+(X, R)$.

Fact

- ▶ If $\pi^x : X \rightarrow \{x\}$ for some $x \in X$, then $R^i\pi_*^x \mathcal{F} = H^i(\mathcal{F})$ and $R^i\pi_!^x \mathcal{F} = H_c^i(\mathcal{F})$.
- ▶ If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$, and X , Y , and Z are locally compact Hausdorff, then $(Rg \circ Rf)_* = Rg_* \circ Rf_*$ and $(Rg \circ Rf)_! = Rg_! \circ Rf_!$.
- ▶ Proper base change: if $f : X \rightarrow Y$ and $h : Z \rightarrow X$, and $\pi_X : X \times_Y Z \rightarrow X$ and $\pi_Z : X \times_Y Z \rightarrow Z$, then $h^* \circ Rf_! \cong R\pi_{Z!} \circ \pi_X^*$.