Sheaves, functors, and derived versions Study group on character sheaves

David Kurniadi Angdinata

University of East Anglia

Tuesday, 4 November 2025

Presheaves

Throughout, let R be a ring, and let X, Y, and Z be topological spaces. Then U and U_i (resp V and V_i) will be open sets of X (resp Y), and \mathcal{F} and \mathcal{F}_i (resp \mathcal{G} and \mathcal{G}_i) will be sheaves of R-modules on X (resp Y).

A **presheaf** (of R-modules on X) is a functor $\mathcal{F}: \mathbf{Top}(X)^{\mathrm{op}} \to \mathbf{Mod}_R$. In other words, it associates every $U \in \mathbf{Top}(X)$ to some $\mathcal{F}(U) \in \mathbf{Mod}_R$, and for all $U_1, U_2 \in \mathbf{Top}(X)$ with $U_1 \subseteq U_2$, there are restrictions

$$(-)|_{U_1}^{U_2}:\mathcal{F}(U_1\to U_2):\mathcal{F}(U_2)\to\mathcal{F}(U_1),$$

such that

- $(-)|_{U_1}^{U_1} = id$, and
- lacksquare $((-)|_{U_1}^{U_2}||_{U_2}^{U_3}=(-)|_{U_1}^{U_3}$ for all $U_3\in \mathbf{Top}(X)$ with $U_2\subseteq U_3$.

Let PSh(X, R) denote the category of presheaves (of R-modules on X).

Sheaves

A sheaf (of R-modules on X) is a presheaf $\mathcal{F} \in \mathbf{PSh}(X,R)$ such that, if $\{U_i\}_i$ is an open cover of $U \in \mathbf{Top}(X)$, then the (equaliser) sequence

$$0 \to \mathcal{F}(U) \xrightarrow{s \mapsto (s|_{U_i}^U)_i} \prod_i \mathcal{F}(U_i) \xrightarrow[(s_i \mapsto (s_i|_{U_i \cap U_j}^{U_i})_i)_i]{(s_i \mapsto (s_i|_{U_i \cap U_j}^{U_i})_i)_i}} \prod_{i,j} \mathcal{F}(U_i \cap U_j)$$

is exact. In other words,

- S1 if $s \in \mathcal{F}(U)$ is such that $s|_{U_i}^U = 0$ for all i, then s = 0, and
- S2 if $s_i \in \mathcal{F}(U_i)$ and $s_j \in \mathcal{F}(U_j)$ are such that $s_i|_{U_i \cap U_j}^{U_i} = s_j|_{U_i \cap U_j}^{U_j}$ for all i and j, then there is some $s \in \mathcal{F}(U)$ such that $s|_{U_i}^U = s_i$ for all i.

Let $\mathbf{Sh}(X,R)$ denote the category of sheaves (of R-modules on X), and let $(-)^-: \mathbf{Sh}(X,R) \to \mathbf{PSh}(X,R)$ denote its natural forgetful functor.

Morphisms of sheaves

A **morphism** of (pre)sheaves (of R-modules on X) is a natural transformation $\phi: \mathcal{F}_1 \to \mathcal{F}_2$. In other words, it is a collection of R-linear maps $\phi_U: \mathcal{F}_1(U) \to \mathcal{F}_2(U)$ for each $U \in \mathbf{Top}(X)$, such that

$$\begin{array}{ccc}
\mathcal{F}_{1}(U_{1}) & \xrightarrow{\phi_{U_{1}}} & \mathcal{F}_{2}(U_{1}) \\
(-)|_{U_{2}}^{U_{1}} \downarrow & & \downarrow (-)|_{U_{2}}^{U_{1}} \cdot \\
\mathcal{F}_{1}(U_{2}) & \xrightarrow{\phi_{U_{2}}} & \mathcal{F}_{2}(U_{2})
\end{array}$$

The **stalk** of \mathcal{F} at some $x \in X$ is the direct limit

$$\mathcal{F}_{x} := \varinjlim_{\substack{U \in \mathsf{Top}(X), \\ x \in U}} \mathcal{F}(U).$$

If \mathcal{F}_1 and \mathcal{F}_2 are sheaves, then ϕ is an isomorphism precisely if the induced morphism $\phi_X : \mathcal{F}_{1,X} \to \mathcal{F}_{2,X}$ is an isomorphism for each $X \in X$.

Examples of sheaves

Let X be a C^n -manifold over K/\mathbb{R} . For all $m \leq n$, there are sheaves

$$U \mapsto C^m(U,K)$$
.

Let X be a variety over $K = \overline{K}$. The **structure sheaf** is given by

$$\mathcal{O}_X: U \mapsto \{\text{regular functions } U \to K\}.$$

Let M be an R-module, and let $x \in X$. The **skyscraper sheaf** is given by

$$\underline{M_x}: U \mapsto \begin{cases} M & \text{if } x \in U, \\ 0 & \text{otherwise.} \end{cases}$$

On the other hand, the presheaf

$$\mathcal{F}: U \mapsto \{\text{bounded continuous functions } U \to \mathbb{R}\}$$

is not a sheaf.

Constant sheaves

Let M be an R-module. The constant sheaf \underline{M}_X is not just the presheaf $U\mapsto M!$ Since \emptyset has an empty open cover $\{\overline{U_i}\}_{i\in\emptyset}$, all $s\in\underline{M}_X(\emptyset)$ vacuously satisfy $s|_{U_i}^\emptyset=0$ for all $i\in\emptyset$, so S1 says that s=0. Thus

$$\underline{M_X}(\emptyset) = 0.$$

Let $U_1,U_2\in \mathbf{Top}(X)$ be disjoint with $\underline{M_X}(U_1)=\underline{M_X}(U_2)=M$. If $s_1\in \underline{M_X}(U_1)$ and $s_2\in \underline{M_X}(U_2)$, then $s_1|_{U_1\cap U_2}^{U_1}=s_2|_{U_1\cap U_2}^{U_2}=0$, so S2 gives some $s\in \underline{M_X}(U_1\sqcup U_2)$ such that $s|_{U_1}^{U_1\sqcup U_2}=s_1$ and $s|_{U_2}^{U_1\sqcup U_2}=s_2$. Thus

$$M_X(U_1 \sqcup U_2) = M \oplus M.$$

In other words, the constant sheaf is given by

 $\underline{\mathit{M}_{\mathit{X}}}:\mathit{U}\mapsto\{\text{continuous functions }\mathit{U}\rightarrow\mathit{M}\},$

where M is given the discrete topology.

Sheafification

Let $\mathcal{F} \in \mathbf{PSh}(X,R)$. The **sheafification** of \mathcal{F} is the unique sheaf $\mathcal{F}^+ \in \mathbf{Sh}(X,R)$ satisfying the universal property

This says that for any $\mathcal{F}_0 \in \mathbf{Sh}(X,R)$ and any $\phi : \mathcal{F} \to \mathcal{F}_0$, there is a unique $\phi^+ : \mathcal{F}^+ \to \mathcal{F}_0$ such that $\phi^+ \circ (-)^+ = \phi$.

In other words, $(-)^+: \mathbf{PSh}(X,R) \to \mathbf{Sh}(X,R)$ is the **right adjoint** to the forgetful functor $(-)^-: \mathbf{Sh}(X,R) \to \mathbf{PSh}(X,R)$, in the sense that

$$\mathsf{Hom}_{\textbf{Sh}(X,R)}(\mathcal{F}_1^+,\mathcal{F}_2) \cong \mathsf{Hom}_{\textbf{PSh}(X,R)}(\mathcal{F}_1,\mathcal{F}_2^-),$$

so that $\mathcal{F}_x = \mathcal{F}_x^+$ for all $x \in X$.

Hom and tensor product

Grothendieck introduced a six-functor formalism for sheaves.

The **hom** $\mathcal{H}om(\mathcal{F}_1,\mathcal{F}_2) \in \mathbf{Sh}(X,R)$ is the sheaf

$$U \mapsto \mathsf{Hom}_{\mathsf{Sh}(U,R)}(\mathcal{F}_1|_U,\mathcal{F}_2|_U).$$

The **tensor product** $\mathcal{F}_1 \otimes \mathcal{F}_2 \in \mathbf{Sh}(X,R)$ is the sheafification of

$$U \mapsto \mathcal{F}_1(U) \otimes_R \mathcal{F}_2(U)$$
.

Fact

- $\blacktriangleright \; \mathsf{Hom}_{\mathsf{Sh}(X,R)}(\mathcal{F}_1 \otimes \mathcal{F}_2, \mathcal{F}_3) \cong \mathsf{Hom}_{\mathsf{Sh}(X,R)}(\mathcal{F}_1, \mathcal{H}\mathit{om}(\mathcal{F}_2, \mathcal{F}_3)).$
- $ightharpoonup \mathcal{F} \otimes \underline{R_X} \cong \mathcal{F} \text{ and } \mathcal{H}om(\underline{R_X},\mathcal{F}) \cong \mathcal{F}.$
- ▶ If $x \in X$, then $(\mathcal{F}_1 \otimes \mathcal{F}_2)_x \cong \mathcal{F}_{1,x} \otimes_R \mathcal{F}_{2,x}$, but $\mathcal{H}om(\mathcal{F}_1, \mathcal{F}_2)_x \ncong Hom(\mathcal{F}_{1,x}, \mathcal{F}_{2,x})$ in general.

Pullback and pushforward

Let $f: X \to Y$. The **pushforward** $f_*\mathcal{F} \in \mathbf{Sh}(Y, R)$ is the sheaf

$$V \mapsto \mathcal{F}(f^{-1}(V)).$$

The **pullback** $f^*\mathcal{G} \in \mathbf{Sh}(X,R)$ is the sheafification of

$$U \mapsto \varinjlim_{\substack{V \in \mathbf{Top}(Y), \\ f(U) \subseteq V}} \mathcal{G}(V).$$

Fact

- $\blacktriangleright \operatorname{\mathsf{Hom}}_{\operatorname{\mathbf{Sh}}(X,R)}(f^*\mathcal{G},\mathcal{F}) \cong \operatorname{\mathsf{Hom}}_{\operatorname{\mathbf{Sh}}(Y,R)}(\mathcal{G},f_*\mathcal{F}).$
- $f^*\underline{R_Y} = \underline{R_X}$ and $(f^*\mathcal{G})_x = \mathcal{G}_{f(x)}$ for all $x \in X$.
- ▶ If $\iota_y : \{y\} \hookrightarrow Y$ for some $y \in Y$, then $\iota_y^* \mathcal{G} = \underline{\mathcal{G}_{y,\{y\}}}$.
- ▶ If $\pi^x : X \rightarrow \{x\}$ for some $x \in X$, then $\pi_*^x \mathcal{F} = \underline{\mathcal{F}(X)}$.
- If $g: Y \to Z$, then $(g \circ f)_* = g_* \circ f_*$ and $(g \circ f)^* = f^* \circ g^*$.

Shriek pushforward

Recall that f is **proper** if it is universally closed, in the sense that $f \times \operatorname{id}: X \times Z \to Y \times Z$ is closed for all Z. If X is locally compact Hausdorff, then f is proper iff $f^{-1}(Z)$ is compact for any compact $Z \subseteq Y$. The **shriek pushforward** $f \in \mathbf{Sh}(Y, R)$ is the sheaf

$$V \mapsto \{s \in \mathcal{F}(f^{-1}(V)) : f|_{\text{supp}(s)} \text{ is proper}\},$$

where supp(s) := { $x \in X : s \neq 0$ in \mathcal{F}_x } is closed.

Fact

- ► If $\iota: X \hookrightarrow Y$ is open, then $\operatorname{\mathsf{Hom}}_{\operatorname{\mathbf{Sh}}(Y,R)}(\iota_!\mathcal{F},\mathcal{G}) \cong \operatorname{\mathsf{Hom}}_{\operatorname{\mathbf{Sh}}(X,R)}(\mathcal{F},\iota^*\mathcal{G}).$
- ▶ If f is proper, such as when $f: X \hookrightarrow Y$ is closed, then $f_! = f_*$.
- ▶ If $\pi^x : X \rightarrow \{x\}$ for some $x \in X$, then

$$\pi_!^{\mathsf{x}}\mathcal{F} = \{s \in \mathcal{F}(X) : \mathsf{supp}(s) \text{ is compact}\}.$$

▶ If $g: Y \to Z$ is separated, in the sense that the diagonal $Y \hookrightarrow Y \times_Z Y$ is closed, then $(g \circ f)_! = g_! \circ f_!$.

Locally closed inclusions

Assume that $\iota: X \hookrightarrow Y$ is locally closed. Then $\iota_!: \mathbf{Sh}(X, R) \to \mathbf{Sh}(Y, R)$ is **extension-by-zero**, where $\iota_! \mathcal{F} \in \mathbf{Sh}(Y, R)$ is the sheafification of

$$V \mapsto egin{cases} \mathcal{F}(V \cap \iota(X)) & ext{if } V \cap \overline{\iota(X)} \subseteq \iota(X), \\ 0 & ext{otherwise}, \end{cases}$$

so its stalk at $y \in Y$ is

$$(\iota_!\mathcal{F})_y = \begin{cases} \mathcal{F}_y & \text{if } y \in \iota(X), \\ 0 & \text{otherwise.} \end{cases}$$

In this case, $\iota_!$ has a right adjoint **restriction-with-supports** $\iota^!: \mathbf{Sh}(Y,R) \to \mathbf{Sh}(X,R)$, where $\iota^! \mathcal{G} \in \mathbf{Sh}(X,R)$ is the sheafification of

$$U \mapsto \varinjlim_{\substack{V \in \mathbf{Top}(Y), \\ V \cap \iota(X) = \iota(U)}} \{s \in \mathcal{G}(V) : \mathrm{supp}(s) \subseteq \iota(U)\},$$

so that $\iota^! = \iota^*$ whenever ι is open.

Classical derived functors

Since \mathbf{Mod}_R has enough injectives, $\mathbf{Sh}(X,R)$ also has enough injectives, so for any $\mathcal{F} \in \mathbf{Sh}(X,R)$, there is a classical injective resolution

$$0 \to \mathcal{F} \to \mathcal{I}^0 \xrightarrow{d^0} \mathcal{I}^1 \xrightarrow{d^1} \dots$$

Let $F : \mathbf{Sh}(X,R) \to \mathbf{Sh}(Y,R)$ be a functor. For each $i \in \mathbb{N}$, the classical derived functor $R^iF : \mathbf{Sh}(X,R) \to \mathbf{Sh}(Y,R)$ of F is given by

$$\mathcal{F}\mapsto H^i(0 o F(\mathcal{I}^0)\xrightarrow{F(d^0)}F(\mathcal{I}^1)\xrightarrow{F(d^1)}\dots):=\ker F(d^i)/\operatorname{im} F(d^{i-1}),$$

which is independent of the choice of classical injective resolution. For each $i \in \mathbb{Z}$, the **cohomology** of \mathcal{F} is

$$H^i(\mathcal{F}) := R^i F(\mathcal{F}).$$

If F is left exact, then $H^0(\mathcal{F})=R^0F(\mathcal{F})=\ker F(d^0)=F(\mathcal{F})$. For instance, $\mathcal{H}om(\mathcal{F},-)$, $\mathcal{H}om(-,\mathcal{F})$, f^* , f_* , $f_!$, $\iota_!$, and $\iota^!$ are all left exact, and f^* and $\iota_!$ (and $\mathcal{F}\otimes -$ and $-\otimes \mathcal{F}$ if \mathbf{Mod}_R is flat) are also right exact.

Complex category

Let \mathcal{A} be an abelian category. Let $C(\mathcal{A})$ denote the category whose objects are **chain complexes** A^{\bullet} for some $A^i \in \mathcal{A}$ given by

$$\dots \xrightarrow{d_A^{i-1}} A^i \xrightarrow{d_A^i} A^{i+1} \xrightarrow{d_A^{i+1}} \dots,$$

and whose morphisms are **chain maps** $\phi^{\bullet}: A^{\bullet} \to B^{\bullet}$ such that

$$\dots \xrightarrow{d_A^{i-1}} A^i \xrightarrow{d_A^i} A^{i+1} \xrightarrow{d_A^{i+1}} \dots$$

$$\downarrow \phi^i \qquad \qquad \downarrow \phi^{i+1} \qquad \qquad \downarrow \phi^{i+1} \qquad \qquad \vdots$$

$$\dots \xrightarrow{d_A^{i-1}} B^i \xrightarrow{d_B^i} B^{i+1} \xrightarrow{d_B^{i+1}} \dots$$

For each $i \in \mathbb{Z}$, the **cohomology** of a chain complex $A^{\bullet} \in \mathcal{A}$ is given by

$$H^i(A^{\bullet}) := \ker d^i / \operatorname{im} d^{i-1}$$
.

A chain map $\phi^{\bullet}: A^{\bullet} \to B^{\bullet}$ is a **quasi-isomorphism** if the induced morphisms $H^{i}(\phi^{\bullet}): H^{i}(A^{\bullet}) \to H^{i}(B^{\bullet})$ are isomorphisms for all $i \in \mathbb{Z}$.

Derived category

Let $\mathcal C$ be a category. The **localisation** of $\mathcal C$ with respect to a collection S of morphisms is a category $S^{-1}\mathcal C$ satisfying the universal property

$$\begin{array}{c}
\mathcal{C} \xrightarrow{S^{-1}} S^{-1}\mathcal{C} \\
\downarrow_{F} & \downarrow_{\exists!S^{-1}F}, \\
\forall \mathcal{C}_{0}
\end{array}$$

where C_0 is any category such that $F(\phi)$ is an isomorphism for all $\phi \in S$.

The **derived category** $D(\mathcal{A})$ of \mathcal{A} is the localisation of $C(\mathcal{A})$ with respect to quasi-isomorphisms. Furthermore, let $D^+(\mathcal{A})$ and $D^-(\mathcal{A})$ denote its subcategories such that $A^i=0$ for sufficiently large or small $i\in\mathbb{Z}$ respectively, and let $D^b(\mathcal{A}):=D^+(\mathcal{A})\cap D^-(\mathcal{A})$.

Similarly, let $C^*(A)$ denote the same for C(A) for each of $* \in \{+, -, b\}$.

Derived functors

Assume that \mathcal{A} has enough injectives. Then for all $A^{\bullet} \in \mathcal{C}(\mathcal{A})$, there is an **injective resolution** $I^{\bullet} \in \mathcal{C}(\mathcal{A})$ with a quasi-isomorphism

$$A^{\bullet} \rightarrow I^{\bullet}$$
.

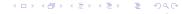
Let $F: \mathcal{A} \to \mathcal{B}$ be a left exact functor between abelian categories. By abstract nonsense, it preserves quasi-isomorphisms on $C^+(\mathcal{A})$, so it defines a functor $F: D^+(\mathcal{A}) \to D^+(\mathcal{B})$. Furthermore, there is a **derived functor** $RF: D^+(\mathcal{A}) \to D^+(\mathcal{B})$ given by

$$A^{\bullet} \mapsto F(I^{\bullet}),$$

which recovers the classical derived functor for each $i \in \mathbb{Z}$ by

$$R^iF(A)=H^i(RF(A)).$$

If it is also right exact, then it preserves quasi-isomorphisms on $C^-(\mathcal{A})$, so it defines a functor $F:D(\mathcal{A})\to D(\mathcal{B})$, and the derived functor $RF:D(\mathcal{A})\to D(\mathcal{B})$ satisfies $RF(A^\bullet)=0$ for all $A^\bullet\in\mathcal{A}$.



Derived sheaf functors

Let $D^*(X,R) := D^*(\mathbf{Sh}(X,R))$, which has non-zero derived functors

$$R\mathcal{H}om(\mathcal{F},-), R\mathcal{H}om(-,\mathcal{F}), Rf_*, Rf_!, \iota^!.$$

The **shriek pullback** $f^!: D^+(Y,R) \to D^+(X,R)$ is the right adjoint of $Rf_!: D^+(X,R) \to D^+(Y,R)$, which exists when X and Y are locally compact Hausdorff. If $\iota: X \hookrightarrow Y$ is locally closed, then this coincides with $R\iota^!: D^+(Y,R) \to D^+(X,R)$.

Fact

- If $\pi^x : X \to \{x\}$ for some $x \in X$, then $R^i \pi_*^x \mathcal{F} = H^i(\mathcal{F})$ and $R^i \pi_!^x \mathcal{F} = H^i_c(\mathcal{F})$.
- ▶ If $f: X \to Y$ and $g: Y \to Z$, and X, Y, and Z are locally compact Hausdorff, then $(Rg \circ Rf)_* = Rg_* \circ Rf_*$ and $(Rg \circ Rf)_! = Rg_! \circ Rf_!$.
- ▶ Proper base change: if $f: X \to Y$ and $h: Z \to X$, and $\pi_X: X \times_Y Z \to X$ and $\pi_Z: X \times_Y Z \to Z$, then $h^* \circ Rf_! \cong R\pi_{Z!} \circ \pi_Z^*$.