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Some fun quotes

Skorobogatov–Morgan (2024):

A notoriously difficult conjecture on prime values of polynomials, deemed
to be inaccessible in the current state of analytic number theory.

Bunyakovsky (1857):

Il est à présumer que la démonstration rigoureuse du théorème énoncé
sur les progressions arithmétiques des ordres supérieurs conduirait, dans
l’état actuel de la théorie des nombres, à des difficultés insurmontables;

néanmoins, sa réalité ne peut pas être révoquée en doute.
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Primes in arithmetic progressions

Theorem (Dirichlet, 1837)
Let a, b ∈ Z. Assume no primes p satisfy p | a and p | b. Then there are
infinitely many n such that an + b is prime.

Example (4X + 3)

n 0 1 2 3 4 5 6 7 8 9 10 11 12
4n + 3 3 7 11 15 19 23 27 31 35 39 43 47 51
prime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

If there were a finite set S := {p prime : p ≡ 3 mod 4}, then

N := 2 +
∏
p∈S

p2 ≡ 3 mod 4,

so N has a prime factor q ≡ 3 mod 4 not in S , which is a contradiction.

4 / 50



Primes in arithmetic progressions

Theorem (Dirichlet, 1837)
Let a, b ∈ Z. Assume no primes p satisfy p | a and p | b. Then there are
infinitely many n such that an + b is prime.

Example (4X + 3)

n 0 1 2 3 4 5 6 7 8 9 10 11 12
4n + 3 3 7 11 15 19 23 27 31 35 39 43 47 51
prime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

If there were a finite set S := {p prime : p ≡ 3 mod 4}, then

N := 2 +
∏
p∈S

p2 ≡ 3 mod 4,

so N has a prime factor q ≡ 3 mod 4 not in S , which is a contradiction.

5 / 50



Primes in arithmetic progressions

Theorem (Dirichlet, 1837)
Let a, b ∈ Z. Assume no primes p satisfy p | a and p | b. Then there are
infinitely many n such that an + b is prime.

Example (4X + 3)

n 0 1 2 3 4 5 6 7 8 9 10 11 12
4n + 3 3 7 11 15 19 23 27 31 35 39 43 47 51
prime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

If there were a finite set S := {p prime : p ≡ 3 mod 4}, then

N := 2 +
∏
p∈S

p2 ≡ 3 mod 4,

so N has a prime factor q ≡ 3 mod 4 not in S , which is a contradiction.

6 / 50



Primes in polynomial sequences

Conjecture (Bunyakovsky, 1857)
Let f ∈ Z[X ] be irreducible. Assume no primes p satisfy “p | f (n) for all
n”. Then there are infinitely many n such that f (n) is prime.

This is Dirichlet’s theorem when f (X ) = aX + b.

Example (X 2 + 1)

n 0 1 2 3 4 5 6 7 8 9 10 11 12
n2 + 1 1 2 5 10 17 26 37 50 65 82 101 122 145
prime ✓ ✓ ✓ ✓ ✓

This is one of the four Landau’s problems, amongst Goldbach’s
conjecture, the twin prime conjecture, and Legendre’s conjecture.
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Simultaneous primes in arithmetic progressions

Conjecture (Dickson, 1904)
Let a1, . . . , ak , b1, . . . , bk ∈ Z. Set f (X ) := (a1X + b1) · · · · · (akX + bk).
Assume no primes p satisfy “p | f (n) for all n”. Then there are infinitely
many n such that a1n + b1, . . . , akn + bk are simultaneously prime.

This is the twin prime conjecture for X and X + 2.

Example (X and 2X + 1)

p 2 3 5 7 11 13 17 19 23 29 31 37 41
2p + 1 5 7 11 15 23 27 35 39 47 59 63 75 83
prime ✓ ✓ ✓ ✓ ✓ ✓ ✓

This is the Germain prime conjecture, which implies that there are
infinitely many composite Mersenne numbers, since 2p + 1 | 2p − 1
whenever p ≡ 3 mod 4 is a Germain prime.
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Density of simultaneous primes

Conjecture (Hardy–Littlewood, 1923)
Let a1, . . . , ak , b1, . . . , bk ∈ Z. Set f (X ) := (a1X + b1) · · · · · (akX + bk).
Assume no primes p satisfy “p | f (n) for all n”. Then

#

{
n ≤ N :

a1n + b1, . . . , akn + bk
are simultaneously prime

}
∼ C · N

logk N
.

Here,

C :=
∏
p

(
1− 1

p

)−k (
1− #{n ∈ Fp : f (n) = 0}

p

)
.

If f1(X ) = X , then this is the prime number theorem that

#{n ≤ N : n is prime} ∼ N

logN
.

If f1(X ) = X and f2(X ) = X + 2, then C is the twin prime constant.
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Simultaneous primes in polynomial sequences

Conjecture (Schinzel’s hypothesis H, 1958)
Let f1, . . . , fk ∈ Z[X ] be irreducible. Set f := f1 · · · · · fk . Assume no
primes p satisfy “p | f (n) for all n”. Then there are infinitely many n
such that f1(n), . . . , fk(n) are simultaneously prime.

Conjecture (Bateman–Horn, 1962)
Let f1, . . . , fk ∈ Z[X ] be irreducible. Set f := f1 · · · · · fk . Assume no
primes p satisfy “p | f (n) for all n”. Then

#

{
n ≤ N :

f1(n), . . . , fk(n)
are simultaneously prime

}
∼ C · N∏

i deg fi · log
k N

.

Here,

C :=
∏
p

(
1− 1

p

)−k (
1− #{n ∈ Fp : f (n) = 0}

p

)
.
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Multivariate variants

Theorem (Friedlander–Iwaniec, 1997)
There are infinitely many (x , y) ∈ Z2 such that x2 + y4 is prime.

Theorem (Green–Tao–Ziegler, 2006)
Let f1, . . . , fk ∈ Z[X ] such that fi (0) = 0. Then there are infinitely many
(x , y) ∈ Z2 such that x + f1(y), . . . , x + fk(y) are simultaneously prime.

Theorem (Bodin–Dèbes–Najib, 2019)
Let R be a characteristic zero UFD whose fraction field satisfies the
product formula, and let f1, . . . , fk ∈ R[X ,Y ]. Then there are y ∈ R[X ]
such that f1(X , y(X )), . . . , fk(X , y(X )) are simultaneously irreducible.

Example (X 8 + t3 over F2[t])
(t2+t+1)8+t3 = (t+1)(t15+t14+t13+t12+t11+t10+t9+t8+t2+t+1).
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Genericity of simultaneous primes

Let Pd,N be the set of adX
d + · · ·+ a0 ∈ Z[X ] such that |ai | ≤ N.

Theorem (Skorobogatov–Sofos, 2023)
Let Sd,N be the set of f ∈ Pd,N such that X p − X ∤ f in all Fp[X ]. Then

lim
N→∞

#

{
(f1, . . . , fk) ∈ Sk

d,N :
∃n ∈ Z, f1(n), . . . , fk(n)
are simultaneously prime

}
#Sk

d,N

= 1.

Theorem (Skorobogatov–Sofos, 2023)
Let K be a cyclic number field with integral basis e1, . . . , em of OK . Then

lim
N→∞

#

{
f ∈ Pd,N :

NmK
Q(e1X1 + · · ·+ emXm) = f (X )

has a rational point

}
#Pd,N

= 1.
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The Hasse principle

The Hasse principle holds for a variety V over a global field K if it has a
point in K whenever it has points in Kv for all places v of K .

Theorem (Hasse–Minkowski theorem)
Let a1, . . . , am ∈ Q. Then the Hasse principle holds for

a1X
2
1 + · · ·+ amX

2
m.

The proof for m = 4 reduces to the proof for m = 3 by Dirichlet’s
theorem and the fundamental exact sequence of global class field theory.

Theorem (Hasse norm theorem)
Let K be a cyclic number field. Then there is a short exact sequence

1 → Q×/NmK
Q(K

×) →
⊕
p≤∞

Q×
p /Nm

K
Q((K ⊗Q Qp)

×) → Gal(K/Q) → 1.

Thus a local norm everywhere except possibly one place is a global norm.
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Application of Dirichlet’s theorem

Example (Y 2 + 3Z 2 = 5X + 7)
Claim that the Hasse principle holds.

By the Hasse norm theorem, it
suffices to find some x ∈ Q such that Y 2 + 3Z 2 = 5x + 7 has points in
Qp for all places p of Q except possibly one prime. Observe that

(1)2 + 3(1)2 ≡ 5(1) + 7 mod 23,

(3)2 + 3(1)2 ≡ 5(1) + 7 mod 33,

so it has points in Q2 and Q3 by Hensel’s lemma. It suffices to find some
x ∈ Q such that x ≡ 1 mod 23 and x ≡ 1 mod 33, so that

5x + 7 = 5(23 · 33 · n + 1) + 7 = 22 · 3 · (90n + 1).

By Dirichlet’s theorem, there is some n such that 90n + 1 is prime. For
instance, n = 2 gives Y 2 + 3Z 2 = 22 · 3 · 181, which has points in Q2,
Q3, and R, but also Qp for all primes p except 181.
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(1)2 + 3(1)2 ≡ 5(1) + 7 mod 23,

(3)2 + 3(1)2 ≡ 5(1) + 7 mod 33,

so it has points in Q2 and Q3 by Hensel’s lemma.

It suffices to find some
x ∈ Q such that x ≡ 1 mod 23 and x ≡ 1 mod 33, so that

5x + 7 = 5(23 · 33 · n + 1) + 7 = 22 · 3 · (90n + 1).

By Dirichlet’s theorem, there is some n such that 90n + 1 is prime. For
instance, n = 2 gives Y 2 + 3Z 2 = 22 · 3 · 181, which has points in Q2,
Q3, and R, but also Qp for all primes p except 181.
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Application of Schinzel’s hypothesis H

Dirichlet’s theorem can be replaced by assuming Schinzel’s hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)
Let a1, . . . , ak ∈ Q×, and let f1, . . . , fk ∈ Q[X ] be irreducible. Assume
Schinzel’s hypothesis H. Then the Hasse principle holds for

Y 2
1 + a1Z

2
1 = f1(X ), . . . , Y 2

k + akZ
2
k = fk(X ).

Thus the Hasse principle conditionally holds for conic bundles over P1
Q.

Example (Iskovskikh, 1971)
Let V be the variety over Q given by Y 2 + Z 2 = −(X − 2)(X − 3). Then
V has points in R and Qp for all primes p but no points in Q. The failure
of the Hasse principle can be detected by (3− X 2,−1) ∈ Br(V )[2].
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The Brauer–Manin obstruction

Let V be a variety over a global field K . There is a commutative diagram

V (K ) V (AK )

0 Br(K )
⊕
v

Br(Kv ) Q/Z 0

(−)∗

invv

.

For any A ∈ Br(V ), the Brauer-Manin set is

V (AK )
A := {(xv )v ∈ V (AK ) :

∑
v invv (x

∗
v A) = 0}.

Example (Iskovskikh, 1971)
Let A := (3− X 2,−1) ∈ Br(V ). For any (xv )v ∈ V (AK ), it can be
shown that

∑
v invv (x

∗
v A) =

1
2 , so that V (K ) ⊆ V (AK )

A = ∅.
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Rationally connected varieties

A rationally connected variety is a smooth projective variety such that
any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélène, 2003)
Let V be a rationally connected variety over a number field K . If
V (K ) = ∅, then V (AK )

A = ∅ for some A ∈ Br(V ).

This is known for conic bundles over P1
Q with at most five geometric

degenerate fibres, due to Colliot-Thélène–Sansuc–Swinnerton-Dyer
(1987), Colliot-Thélène (1990), and Salberger–Skorobogatov (1991).

Theorem (Colliot-Thélène–Swinnerton-Dyer, 1994)
Assume Schinzel’s hypothesis H. Then Colliot-Thélène’s conjecture holds
for Severi–Brauer bundles over P1

Q.
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