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Some fun quotes

Skorobogatov—-Morgan (2024):

A notoriously difficult conjecture on prime values of polynomials, deemed
to be inaccessible in the current state of analytic number theory.
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Some fun quotes

Skorobogatov—-Morgan (2024):

A notoriously difficult conjecture on prime values of polynomials, deemed
to be inaccessible in the current state of analytic number theory.

Bunyakovsky (1857):

Il est & présumer que la démonstration rigoureuse du théoreme énoncé

sur les progressions arithmétiques des ordres supérieurs conduirait, dans

['état actuel de la théorie des nombres, a des difficultés insurmontables;
néanmoins, sa réalité ne peut pas étre révoquée en doute.
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Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let a,b € Z. Assume no primes p satisfy p | a and p | b. Then there are
infinitely many n such that an + b is prime.
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Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let a,b € Z. Assume no primes p satisfy p | a and p | b. Then there are
infinitely many n such that an + b is prime.

Example (4X + 3)

n o|1/2 (3|4 |5|6 |7 |89 |10|11]12
4n+3 | 3 | 7 |11 15|19 |23 |27 |31 |35 |39 |43 |47 |51
prime | v |V | V v |V v v |V
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Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let a,b € Z. Assume no primes p satisfy p | a and p | b. Then there are
infinitely many n such that an + b is prime.

Example (4X + 3)

n o|1/2 (3|4 |5|6 |7 |89 |10|11]12
4n+3 | 3 | 7 |11 15|19 |23 |27 |31 |35 |39 |43 |47 |51
prime | v |V | V v |V v v |V

If there were a finite set S := {p prime : p =3 mod 4}, then

N:=2+][p*=3 mod4,
peS

so N has a prime factor g =3 mod 4 not in S, which is a contradiction.
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Primes in polynomial sequences

Conjecture (Bunyakovsky, 1857)

Let f € Z[X] be irreducible. Assume no primes p satisfy “p
n". Then there are infinitely many n such that f(n) is prime.

f(n) for all
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Primes in polynomial sequences

Conjecture (Bunyakovsky, 1857)

Let f € Z[X] be irreducible. Assume no primes p satisfy “p
n". Then there are infinitely many n such that f(n) is prime.

f(n) for all

This is Dirichlet’s theorem when f(X) = aX + b.

8/50



Primes in polynomial sequences

Conjecture (Bunyakovsky, 1857)

Let f € Z[X] be irreducible. Assume no primes p satisfy “p
n". Then there are infinitely many n such that f(n) is prime.

f(n) for all

This is Dirichlet’s theorem when f(X) = aX + b.

Example (X2 + 1)

n 0|1|2|3|4|5|6|7|8|9]10]|11 |12
n?+1[1[2[5|10[17]26[37[50]65|82]|101|122] 145
prime VIV v v v
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Primes in polynomial sequences

Conjecture (Bunyakovsky, 1857)

Let f € Z[X] be irreducible. Assume no primes p satisfy “p
n". Then there are infinitely many n such that f(n) is prime.

f(n) for all

This is Dirichlet’s theorem when f(X) = aX + b.

Example (X2 + 1)

n 0|1|2|3|4|5|6|7|8|9]10]|11 |12
n?+1[1[2[5|10[17]26[37[50]65|82]|101|122] 145
prime VIV v v v

This is one of the four Landau’s problems, amongst Goldbach's
conjecture, the twin prime conjecture, and Legendre's conjecture.
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Simultaneous primes in arithmetic progressions

Conjecture (Dickson, 1904)

Let a1,...,ak, by,...,bx € Z. Set f(X) = (31X+b1) ceeee (akX+bk).
Assume no primes p satisfy “p | f(n) for all n”. Then there are infinitely
many n such that ayn+ by, ..., axn + by, are simultaneously prime.
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Simultaneous primes in arithmetic progressions

Conjecture (Dickson, 1904)

Let a1,...,ak, by,...,bx € Z. Set f(X) = (31X+b1) ceeee (akX+bk).
Assume no primes p satisfy “p | f(n) for all n”. Then there are infinitely
many n such that ayn+ by, ..., axn + by, are simultaneously prime.

This is the twin prime conjecture for X and X + 2.
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Simultaneous primes in arithmetic progressions

Conjecture (Dickson, 1904)

Let ai, ..

many n such that ayn+ by, .

'7ak7b17"

This is the twin prime conjecture for X and X + 2.

Example (X and 2X + 1)

., b € Z. Set f(X) = (31X + bl) BRI (akX + bk).
Assume no primes p satisfy “p | f(n) for all n”. Then there are infinitely
..,axn + by are simultaneously prime.

p 2135 |7 |11|13|17|19|23|29|31|37|41
2p+1| 5| 7 |11]15|23|27|35|39|47|59|63]|75]83
prime | v |V | V v v |V v
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Simultaneous primes in arithmetic progressions

Conjecture (Dickson, 1904)

Let a1,...,ak, by,...,bx € Z. Set f(X) = (31X—|— bl) ceeee (akX+bk).
Assume no primes p satisfy “p | f(n) for all n”. Then there are infinitely
many n such that ayn+ by, ..., axn + by, are simultaneously prime.

This is the twin prime conjecture for X and X + 2.

Example (X and 2X + 1)

p 2135 |7 |11|13|17|19|23|29|31|37|41
2p+1| 5| 7 |11]15|23|27|35|39|47|59|63]|75]83
prime | v |V | V v v |V v

This is the Germain prime conjecture, which implies that there are
infinitely many composite Mersenne numbers, since 2p+1|2P — 1
whenever p =3 mod 4 is a Germain prime.
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Density of simultaneous primes

Conjecture (Hardy-Littlewood, 1923)

Let a1,...,ak, by,...,bx € Z. Set f(X) = (31X+b1)-----(akx+bk).
Assume no primes p satisfy “p | f(n) for all n”. Then

#{H<N' ayn—+ by, ...,akn+ by }N N

are simultaneously prime . log" N’
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Density of simultaneous primes

Conjecture (Hardy-Littlewood, 1923)

Let a1,...,ak, by,...,bx € Z. Set f(X) = (31X+b1)--~--(akX+bk).
Assume no primes p satisfy “p | f(n) for all n”. Then

#{H<N' ayn—+ by, ...,akn+ by }N N

are simultaneously prime . log" N’

C::H<1_1>_k<1_#{n€FP:f(n):0}).

P p

Here,
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Density of simultaneous primes

Conjecture (Hardy-Littlewood, 1923)

Let a1,...,ak, by,...,bx € Z. Set f(X) = (31X+b1)--~--(akX+bk).
Assume no primes p satisfy “p | f(n) for all n”. Then

#{H<N' ayn—+ by, ...,akn+ by }N N

are simultaneously prime . log" N’

C::H<1_1>_k<1_#{n€Fp:f(n):0}>.

5 P p

Here,

If 1(X) = X, then this is the prime number theorem that

N
#{n < N:nis prime} ~ TN’
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Density of simultaneous primes

Conjecture (Hardy-Littlewood, 1923)

Let a1,...,ak, by,...,bx € Z. Set f(X) = (31X+b1)--~--(akX+bk).
Assume no primes p satisfy “p | f(n) for all n”. Then

#{H<N' ayn—+ by, ...,akn+ by }N N

are simultaneously prime ' log" N’

C::H<1_1>_k<1_#{n€Fp:f(n):0}>.

5 P p

Here,

If 1(X) = X, then this is the prime number theorem that
#{n < N : nis prime} N
. | | ~ —_—,
= P log N

If A(X) =X and (X) = X + 2, then C is the twin prime constant.
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Simultaneous primes in polynomial sequences

Conjecture (Schinzel's hypothesis H, 1958)

Let fi,...,fx € Z[X] be irreducible. Set f :==f ----- fx. Assume no
primes p satisfy “p | f(n) for all n”. Then there are infinitely many n
such that fi(n), ..., fx(n) are simultaneously prime.
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Simultaneous primes in polynomial sequences

Conjecture (Schinzel's hypothesis H, 1958)

Let fi,...,fx € Z[X] be irreducible. Set f :==f ----- fx. Assume no
primes p satisfy “p | f(n) for all n”. Then there are infinitely many n
such that fi(n), ..., fx(n) are simultaneously prime.

Conjecture (Bateman—Horn, 1962)

Let fi,..., fx € Z[X] be irreducible. Set f :=f ----- fi. Assume no
primes p satisfy “p | f(n) for all n”. Then

wloen: fi(n), ..., fi(n) wc.__ N
= " are simultaneously prime [1,degf; - log" N’

CoII(-2) (-t

Here,
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Multivariate variants

Theorem (Friedlander—lwaniec, 1997)
There are infinitely many (x,y) € Z? such that x> + y* is prime.
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Multivariate variants

Theorem (Friedlander—lwaniec, 1997)
There are infinitely many (x,y) € Z? such that x> + y* is prime.

Theorem (Green—Tao—Ziegler, 2006)

Let fi,..., fx € Z[X] such that f;(0) = 0. Then there are infinitely many
(x,y) € Z? such that x + fi(y),...,x + f(y) are simultaneously prime.
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Multivariate variants

Theorem (Friedlander—lwaniec, 1997)
There are infinitely many (x,y) € Z? such that x> + y* is prime.

Theorem (Green—Tao—Ziegler, 2006)
Let fi,..., fx € Z[X] such that f;(0) = 0. Then there are infinitely many
(x,y) € Z? such that x + fi(y),...,x + f(y) are simultaneously prime.
Theorem (Bodin—Debes—Najib, 2019)

Let R be a characteristic zero UFD whose fraction field satisfies the
product formula, and let fi,... fi € R[X,Y]. Then there are y € R[X]
such that f1(X,y(X)),..., (X, y(X)) are simultaneously irreducible.
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Multivariate variants

Theorem (Friedlander—lwaniec, 1997)
There are infinitely many (x,y) € Z? such that x> + y* is prime.

Theorem (Green—Tao—Ziegler, 2006)

Let fi,..., fx € Z[X] such that f;(0) = 0. Then there are infinitely many
(x,y) € Z? such that x + fi(y),...,x + f(y) are simultaneously prime.
Theorem (Bodin—Debes—Najib, 2019)

Let R be a characteristic zero UFD whose fraction field satisfies the

product formula, and let fi,... fi € R[X,Y]. Then there are y € R[X]
such that f1(X,y(X)),..., (X, y(X)) are simultaneously irreducible.

Example (X2 + t3 over F,[t])
(P4t+1)8 413 = (t4+1) (0t 4 B 12 1 110 19 1 18 4 124 4 1),
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Genericity of simultaneous primes
Let Py n be the set of agX? + - + ag € Z[X] such that |a;| < N.
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Genericity of simultaneous primes

Let Py n be the set of agX? + - + ag € Z[X] such that |a;| < N.

Theorem (Skorobogatov—Sofos, 2023)
Let Sy n be the set of f € Py n such that XP — X t f in all F,[X]. Then

IneZ, f(n),...,f(n) }
1

ko
i # {(fl’ o) €SN e simultaneously prime [
Nﬂ;noo #55 N =
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Genericity of simultaneous primes

Let Py n be the set of agX? + - + ag € Z[X] such that |a;| < N.

Theorem (Skorobogatov—Sofos, 2023)
Let Sy n be the set of f € Py n such that XP — X t f in all F,[X]. Then

dneZ, f(n),...,H(n) }
1

ko
i # {(fl’ o) €SN e simultaneously prime [
Nﬂ;noo #55 N =

Theorem (Skorobogatov—Sofos, 2023)

Let K be a cyclic number field with integral basis ey, . .., en of Ok. Then
K _
alrep,y: Nmg (e Xy + - ~.+ emX,,j) = f(X)
’ has a rational point i

lim =
N— oo ##f)d,m
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The Hasse principle

The Hasse principle holds for a variety V' over a global field K if it has a
point in K whenever it has points in K, for all places v of K.
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The Hasse principle

The Hasse principle holds for a variety V' over a global field K if it has a
point in K whenever it has points in K, for all places v of K.

Theorem (Hasse—Minkowski theorem)
Let ay,...,am € Q. Then the Hasse principle holds for

aX?+ o+ amX2.
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The Hasse principle

The Hasse principle holds for a variety V' over a global field K if it has a
point in K whenever it has points in K, for all places v of K.

Theorem (Hasse—Minkowski theorem)
Let ay,...,am € Q. Then the Hasse principle holds for

aX?+ o+ amX2.

The proof for m = 4 reduces to the proof for m = 3 by Dirichlet’s
theorem and the fundamental exact sequence of global class field theory.
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The Hasse principle

The Hasse principle holds for a variety V' over a global field K if it has a
point in K whenever it has points in K, for all places v of K.

Theorem (Hasse—Minkowski theorem)
Let ay,...,am € Q. Then the Hasse principle holds for

aX?+ o+ amX2.

The proof for m = 4 reduces to the proof for m = 3 by Dirichlet’s
theorem and the fundamental exact sequence of global class field theory.

Theorem (Hasse norm theorem)

Let K be a cyclic number field. Then there is a short exact sequence

1— Q*/Nmf(K*) = @D Q) /Nmf (K ®g Q,)*) — Gal(K/Q) — 1

p<oco
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The Hasse principle

The Hasse principle holds for a variety V' over a global field K if it has a
point in K whenever it has points in K, for all places v of K.

Theorem (Hasse—Minkowski theorem)
Let ay,...,am € Q. Then the Hasse principle holds for

aX?+ o+ amX2.

The proof for m = 4 reduces to the proof for m = 3 by Dirichlet’s
theorem and the fundamental exact sequence of global class field theory.

Theorem (Hasse norm theorem)
Let K be a cyclic number field. Then there is a short exact sequence

1— Q*/Nmf(K*) = @D Q) /Nmf (K ®g Q,)*) — Gal(K/Q) — 1

p<oco
Thus a local norm everywhere except possibly one place is a global norm.
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Application of Dirichlet’'s theorem

Example (Y2 +322 =5X +7)
Claim that the Hasse principle holds.
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Application of Dirichlet’'s theorem

Example (Y2 +3Z2 =5X +7)
Claim that the Hasse principle holds. By the Hasse norm theorem, it
suffices to find some x € Q such that Y2 + 372 = 5x + 7 has points in

Qp for all places p of QQ except possibly one prime.
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Application of Dirichlet’'s theorem

Example (Y2 +3Z2 =5X +7)

Claim that the Hasse principle holds. By the Hasse norm theorem, it
suffices to find some x € Q such that Y2 + 372 = 5x + 7 has points in
Qp for all places p of QQ except possibly one prime. Observe that

(1) +3(1)>=5(1) +7 mod 23,
(3)2+3(1)>’=5(1) +7 mod 33,

so it has points in Q2 and Q3 by Hensel's lemma.
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Application of Dirichlet’'s theorem

Example (Y2 +3Z2 =5X +7)

Claim that the Hasse principle holds. By the Hasse norm theorem, it
suffices to find some x € Q such that Y2 + 372 = 5x + 7 has points in
Qp for all places p of QQ except possibly one prime. Observe that

(1> +3(1)>=5(1)+7 mod 23,

(3)2+3(1)>’=5(1) +7 mod 33,

so it has points in Q2 and Q3 by Hensel's lemma. It suffices to find some
x € Q such that x=1 mod 23 and x =1 mod 33, so that

5x +7=5(2-3%n+1)+7=22-3-(90n+1).
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Application of Dirichlet’'s theorem

Example (Y2 +3Z2 =5X +7)

Claim that the Hasse principle holds. By the Hasse norm theorem, it
suffices to find some x € Q such that Y2 + 372 = 5x + 7 has points in
Qp for all places p of QQ except possibly one prime. Observe that

(1) +3(1)>=5(1) +7 mod 23,

(3)2+3(1)>’=5(1) +7 mod 33,

so it has points in Q2 and Q3 by Hensel's lemma. It suffices to find some
x € Q such that x=1 mod 23 and x =1 mod 33, so that

5x +7=5(2-3%n+1)+7=22-3-(90n+1).

By Dirichlet's theorem, there is some n such that 90n + 1 is prime.
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Application of Dirichlet’'s theorem

Example (Y2 +3Z2 =5X +7)

Claim that the Hasse principle holds. By the Hasse norm theorem, it
suffices to find some x € Q such that Y2 + 372 = 5x + 7 has points in
Qp for all places p of QQ except possibly one prime. Observe that

(1> +3(1)>=5(1)+7 mod 23,

(3)2+3(1)>’=5(1) +7 mod 33,

so it has points in Q2 and Q3 by Hensel's lemma. It suffices to find some
x € Q such that x=1 mod 23 and x =1 mod 33, so that

5x +7=5(2-3%n+1)+7=22-3-(90n+1).
By Dirichlet's theorem, there is some n such that 90n + 1 is prime. For

instance, n = 2 gives Y? 4+ 372 =22 .3.181, which has points in Q,
Q3, and R, but also Q, for all primes p except 181.
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Application of Schinzel's hypothesis H

Dirichlet’s theorem can be replaced by assuming Schinzel's hypothesis H.
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Application of Schinzel's hypothesis H

Dirichlet’s theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélene-Sansuc, 1982)

Let a1,...,ax € Q*%, and let f1, ..., fy € Q[X] be irreducible. Assume
Schinzel’s hypothesis H. Then the Hasse principle holds for

Y24+ a2 = A(X), Y2+ axZE = fi(X).
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Application of Schinzel's hypothesis H

Dirichlet’s theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélene-Sansuc, 1982)

Let a1,...,ax € Q*%, and let f1, ..., fy € Q[X] be irreducible. Assume
Schinzel’s hypothesis H. Then the Hasse principle holds for

Y24+ a2 = A(X), Y2+ axZE = fi(X).

Thus the Hasse principle conditionally holds for conic bundles over I%.
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Application of Schinzel's hypothesis H

Dirichlet’s theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélene-Sansuc, 1982)

Let a1,...,ax € Q*%, and let f1, ..., fy € Q[X] be irreducible. Assume
Schinzel’s hypothesis H. Then the Hasse principle holds for

Y2+ a1Z2 = (X)), Y2+ akZ? = fi(X).
Thus the Hasse principle conditionally holds for conic bundles over I%.

Example (Iskovskikh, 1971)

Let V be the variety over Q given by Y2+ Z2 = —(X —2)(X —3). Then
V has points in R and @Q, for all primes p but no points in Q.
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Application of Schinzel's hypothesis H

Dirichlet’s theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélene-Sansuc, 1982)
Let a1,...,ax € Q*%, and let f1, ..., fy € Q[X] be irreducible. Assume
Schinzel’s hypothesis H. Then the Hasse principle holds for

Y2+ a1Z2 = (X)), Y2+ akZ? = fi(X).

Thus the Hasse principle conditionally holds for conic bundles over I%.

Example (Iskovskikh, 1971)

Let V be the variety over Q given by Y2+ Z2 = —(X —2)(X —3). Then
V has points in R and @Q, for all primes p but no points in Q. The failure
of the Hasse principle can be detected by (3 — X2, —1) € Br(V)[2].
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The Brauer—Manin obstruction

Let V be a variety over a global field K. There is a commutative diagram

V(K) —— V(Ak)

l -]

0 — Br(K) — P Br(K,) o Q/Z —— 0
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The Brauer—Manin obstruction

Let V be a variety over a global field K. There is a commutative diagram

V(K) —— V(Ak)

l -]

0 — Br(K) — P Br(K,) o Q/Z —— 0

For any A € Br(V), the Brauer-Manin set is

V(A = {(x), € V(Ak) : Y, inv,(x; A) = 0}.
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The Brauer—Manin obstruction

Let V be a variety over a global field K. There is a commutative diagram

V(K) —— V(Ak)

l -]

0 — Br(K) — P Br(K,) o Q/Z —— 0

For any A € Br(V), the Brauer-Manin set is

V(A = {(x), € V(Ak) : Y, inv,(x; A) = 0}.

Example (Iskovskikh, 1971)

Let A:= (3— X2,—1) € Br(V). For any (x,), € V(Ak), it can be
shown that 3° inv,(x;A) = 3, so that V(K) C V(Ax)" = 0.
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Rationally connected varieties

A rationally connected variety is a smooth projective variety such that
any two geometric points are connected by a rational curve.
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Rationally connected varieties

A rationally connected variety is a smooth projective variety such that
any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélene, 2003)

Let V be a rationally connected variety over a number field K. If
V(K) =0, then V(Ak)* = () for some A € Br(V).
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Rationally connected varieties

A rationally connected variety is a smooth projective variety such that
any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélene, 2003)

Let V be a rationally connected variety over a number field K. If
V(K) =0, then V(Ak)* = () for some A € Br(V).

This is known for conic bundles over I%) with at most five geometric
degenerate fibres, due to Colliot-Thélene-Sansuc—Swinnerton-Dyer
(1987), Colliot-Thélene (1990), and Salberger—Skorobogatov (1991).
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Rationally connected varieties

A rationally connected variety is a smooth projective variety such that
any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélene, 2003)

Let V be a rationally connected variety over a number field K. If
V(K) =0, then V(Ak)* = () for some A € Br(V).

This is known for conic bundles over I%) with at most five geometric
degenerate fibres, due to Colliot-Thélene-Sansuc—Swinnerton-Dyer
(1987), Colliot-Thélene (1990), and Salberger—Skorobogatov (1991).

Theorem (Colliot-Thélene-Swinnerton-Dyer, 1994)

Assume Schinzel’s hypothesis H. Then Colliot-Théléne’s conjecture holds
for Severi-Brauer bundles over I%.
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