Schinzel's hypothesis H

David Ang

Open problems in number theory

Thursday, 31 October 2024

1 / 50

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q*

Some fun quotes

Skorobogatov–Morgan (2024):

A notoriously difficult conjecture on prime values of polynomials, deemed to be inaccessible in the current state of analytic number theory.

Some fun quotes

Skorobogatov–Morgan (2024):

A notoriously difficult conjecture on prime values of polynomials, deemed to be inaccessible in the current state of analytic number theory.

Bunyakovsky (1857):

Il est à présumer que la démonstration rigoureuse du théorème énoncé sur les progressions arithmétiques des ordres supérieurs conduirait, dans l'état actuel de la théorie des nombres, à des difficultés insurmontables; néanmoins, sa réalité ne peut pas être révoquée en doute.

Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let a, $b \in \mathbb{Z}$. Assume no primes p satisfy p | a and p | b. Then there are infinitely many n such that an $+$ b is prime.

Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let a, $b \in \mathbb{Z}$. Assume no primes p satisfy p | a and p | b. Then there are infinitely many n such that an $+$ b is prime.

Example $(4X + 3)$

Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let a, $b \in \mathbb{Z}$. Assume no primes p satisfy p | a and p | b. Then there are infinitely many n such that an $+ b$ is prime.

Example $(4X + 3)$

If there were a finite set $S := \{p \text{ prime} : p \equiv 3 \mod 4\}$, then

$$
N:=2+\prod_{p\in S}p^2\equiv 3\mod 4,
$$

so N has a prime factor $q \equiv 3 \mod 4$ not in S, which is a contradiction.

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | $f(n)$ for all n'' . Then there are infinitely many n such that $f(n)$ is prime.

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | $f(n)$ for all n'' . Then there are infinitely many n such that $f(n)$ is prime.

This is Dirichlet's theorem when $f(X) = aX + b$.

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | $f(n)$ for all n'' . Then there are infinitely many n such that $f(n)$ is prime.

This is Dirichlet's theorem when $f(X) = aX + b$.

Example $(X^2 + 1)$

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | $f(n)$ for all n'' . Then there are infinitely many n such that $f(n)$ is prime.

This is Dirichlet's theorem when $f(X) = aX + b$.

Example $(X^2 + 1)$

This is one of the four Landau's problems, amongst Goldbach's conjecture, the twin prime conjecture, and Legendre's conjecture.

Conjecture (Dickson, 1904)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then there are infinitely many n such that $a_1 n + b_1, \ldots, a_k n + b_k$ are simultaneously prime.

Conjecture (Dickson, 1904)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then there are infinitely many n such that $a_1 n + b_1, \ldots, a_k n + b_k$ are simultaneously prime.

This is the twin prime conjecture for X and $X + 2$.

Conjecture (Dickson, 1904)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then there are infinitely many n such that $a_1 n + b_1, \ldots, a_k n + b_k$ are simultaneously prime.

This is the twin prime conjecture for X and $X + 2$.

Example $(X \text{ and } 2X + 1)$

Conjecture (Dickson, 1904)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then there are infinitely many n such that $a_1 n + b_1, \ldots, a_k n + b_k$ are simultaneously prime.

This is the twin prime conjecture for X and $X + 2$.

Example $(X \text{ and } 2X + 1)$

This is the Germain prime conjecture, which implies that there are infinitely many composite Mersenne numbers, since $2p+1 \mid 2^p-1$ whenever $p \equiv 3 \mod 4$ is a Germain prime.

Conjecture (Hardy–Littlewood, 1923)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then

$$
\#\left\{n\leq N:\begin{array}{l}a_1n+b_1,\ldots,a_kn+b_k\\are\text{ simultaneously prime}\end{array}\right\}\sim C\cdot\frac{N}{\log^k N}.
$$

Conjecture (Hardy–Littlewood, 1923)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then

$$
\#\left\{n\leq N:\begin{array}{l}a_1n+b_1,\ldots,a_kn+b_k\\are\text{ simultaneously prime}\end{array}\right\}\sim C\cdot\frac{N}{\log^k N}.
$$

Here,

$$
C:=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\#\{n\in\mathbb{F}_p:f(n)=0\}}{p}\right).
$$

Conjecture (Hardy–Littlewood, 1923)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then

$$
\#\left\{n\leq N:\begin{array}{l}a_1n+b_1,\ldots,a_kn+b_k\\are\text{ simultaneously prime}\end{array}\right\}\sim C\cdot\frac{N}{\log^k N}.
$$

Here,

$$
C:=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\#\{n\in\mathbb{F}_p:f(n)=0\}}{p}\right).
$$

If $f_1(X) = X$, then this is the prime number theorem that

$$
\#\{n\leq N:n \text{ is prime}\}\sim \frac{N}{\log N}.
$$

17 / 50

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Conjecture (Hardy–Littlewood, 1923)

Let $a_1, ..., a_k, b_1, ..., b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdot \cdot \cdot (a_kX + b_k)$. Assume no primes p satisfy "p | $f(n)$ for all n". Then

$$
\#\left\{n\leq N:\begin{array}{l}a_1n+b_1,\ldots,a_kn+b_k\\are\text{ simultaneously prime}\end{array}\right\}\sim C\cdot\frac{N}{\log^k N}.
$$

Here,

$$
C:=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\#\{n\in\mathbb{F}_p:f(n)=0\}}{p}\right).
$$

If $f_1(X) = X$, then this is the prime number theorem that

$$
\#\{n\leq N:n \text{ is prime}\}\sim \frac{N}{\log N}.
$$

If $f_1(X) = X$ and $f_2(X) = X + 2$, then C is the twin prime constant.

Simultaneous primes in polynomial sequences

Conjecture (Schinzel's hypothesis H, 1958)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ be irreducible. Set $f := f_1 \cdots f_k$. Assume no primes p satisfy "p | $f(n)$ for all n". Then there are infinitely many n such that $f_1(n), \ldots, f_k(n)$ are simultaneously prime.

Simultaneous primes in polynomial sequences

Conjecture (Schinzel's hypothesis H, 1958)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ be irreducible. Set $f := f_1 \cdots f_k$. Assume no primes p satisfy "p | $f(n)$ for all n". Then there are infinitely many n such that $f_1(n), \ldots, f_k(n)$ are simultaneously prime.

Conjecture (Bateman–Horn, 1962)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ be irreducible. Set $f := f_1 \cdots f_k$. Assume no primes p satisfy "p | $f(n)$ for all n". Then

$$
\#\left\{n\leq N:\begin{array}{c}f_1(n),\ldots,f_k(n)\\are\,\,simplies\,\,simplies\,\,h\end{array}\right\}\sim C\cdot\frac{N}{\prod_i\deg f_i\cdot\log^k N}.
$$

Here,

$$
C:=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\#\{n\in\mathbb{F}_p:f(n)=0\}}{p}\right).
$$

20 / 50

イロメ 不個 メイモメ イモメー 毛

Theorem (Friedlander–Iwaniec, 1997) There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Friedlander–Iwaniec, 1997) There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Green–Tao–Ziegler, 2006)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ such that $f_i(0) = 0$. Then there are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x + f_1(y), \ldots, x + f_k(y)$ are simultaneously prime.

Theorem (Friedlander–Iwaniec, 1997)

There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Green–Tao–Ziegler, 2006)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ such that $f_i(0) = 0$. Then there are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x + f_1(y), \ldots, x + f_k(y)$ are simultaneously prime.

Theorem (Bodin–Dèbes–Najib, 2019)

Let R be a characteristic zero UFD whose fraction field satisfies the product formula, and let $f_1, \ldots, f_k \in R[X, Y]$. Then there are $y \in R[X]$ such that $f_1(X, y(X)), \ldots, f_k(X, y(X))$ are simultaneously irreducible.

Theorem (Friedlander–Iwaniec, 1997)

There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Green–Tao–Ziegler, 2006)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ such that $f_i(0) = 0$. Then there are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x + f_1(y), \ldots, x + f_k(y)$ are simultaneously prime.

Theorem (Bodin–Dèbes–Najib, 2019)

Let R be a characteristic zero UFD whose fraction field satisfies the product formula, and let $f_1, \ldots, f_k \in R[X, Y]$. Then there are $y \in R[X]$ such that $f_1(X, y(X)), \ldots, f_k(X, y(X))$ are simultaneously irreducible.

Example $(X^8 + t^3$ over $\mathbb{F}_2[t])$ $(t^2+t+1)^8+t^3 = (t+1)(t^{15}+t^{14}+t^{13}+t^{12}+t^{11}+t^{10}+t^9+t^8+t^2+t+1).$

 $\mathbf{E} = \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{E} + \mathbf{A} \mathbf{D} + \mathbf{A} \mathbf{D}$

Genericity of simultaneous primes

Let $P_{d,N}$ be the set of $a_dX^d + \cdots + a_0 \in \mathbb{Z}[X]$ such that $|a_i| \leq N$.

Genericity of simultaneous primes

Let $P_{d,N}$ be the set of $a_dX^d + \cdots + a_0 \in \mathbb{Z}[X]$ such that $|a_i| \leq N$. Theorem (Skorobogatov–Sofos, 2023) Let $S_{d,N}$ be the set of $f \in P_{d,N}$ such that $X^p - X \nmid f$ in all $\mathbb{F}_p[X]$. Then

$$
\lim_{N\to\infty}\frac{\#\left\{(f_1,\ldots,f_k)\in S_{d,N}^k:\ \frac{\exists n\in\mathbb{Z},\ f_1(n),\ldots,f_k(n)}{\text{are simultaneously prime}}\right\}}{\#S_{d,N}^k} = 1.
$$

Genericity of simultaneous primes

Let $P_{d,N}$ be the set of $a_dX^d + \cdots + a_0 \in \mathbb{Z}[X]$ such that $|a_i| \leq N$. Theorem (Skorobogatov–Sofos, 2023) Let $S_{d,N}$ be the set of $f \in P_{d,N}$ such that $X^p - X \nmid f$ in all $\mathbb{F}_p[X]$. Then

$$
\lim_{N\to\infty}\frac{\#\left\{(f_1,\ldots,f_k)\in S_{d,N}^k:\ \frac{\exists n\in\mathbb{Z},\ f_1(n),\ldots,f_k(n)}{\text{are simultaneously prime}}\right\}}{\#S_{d,N}^k} = 1.
$$

Theorem (Skorobogatov–Sofos, 2023)

Let K be a cyclic number field with integral basis e_1, \ldots, e_m of \mathcal{O}_K . Then

$$
\lim_{N\to\infty}\frac{\#\left\{f\in P_{d,N}: \frac{\text{Nm}_{\mathbb{Q}}^K(e_1X_1+\cdots+e_mX_m)=f(X)}{\text{has a rational point}}\right\}}{\#P_{d,N}}=1.
$$

27 / 50

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1, \ldots, a_m \in \mathbb{Q}$. Then the Hasse principle holds for

$$
a_1X_1^2+\cdots+a_mX_m^2.
$$

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1, \ldots, a_m \in \mathbb{Q}$. Then the Hasse principle holds for

$$
a_1X_1^2+\cdots+a_mX_m^2.
$$

The proof for $m = 4$ reduces to the proof for $m = 3$ by Dirichlet's theorem and the fundamental exact sequence of global class field theory.

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1, \ldots, a_m \in \mathbb{Q}$. Then the Hasse principle holds for

$$
a_1X_1^2+\cdots+a_mX_m^2.
$$

The proof for $m = 4$ reduces to the proof for $m = 3$ by Dirichlet's theorem and the fundamental exact sequence of global class field theory.

Theorem (Hasse norm theorem)

Let K be a cyclic number field. Then there is a short exact sequence

$$
1\to \mathbb{Q}^\times/\mathrm{Nm}_{\mathbb{Q}}^K(K^\times)\to \bigoplus_{\rho\leq\infty}\mathbb{Q}_\rho^\times/\mathrm{Nm}_{\mathbb{Q}}^K((K\otimes_\mathbb{Q} \mathbb{Q}_\rho)^\times)\to \mathrm{Gal}(K/\mathbb{Q})\to 1.
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A$

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1, \ldots, a_m \in \mathbb{Q}$. Then the Hasse principle holds for

$$
a_1X_1^2+\cdots+a_mX_m^2.
$$

The proof for $m = 4$ reduces to the proof for $m = 3$ by Dirichlet's theorem and the fundamental exact sequence of global class field theory.

Theorem (Hasse norm theorem)

Let K be a cyclic number field. Then there is a short exact sequence

$$
1\to \mathbb{Q}^\times/\mathrm{Nm}_{\mathbb{Q}}^K(K^\times)\to \bigoplus_{\rho\leq\infty}\mathbb{Q}_\rho^\times/\mathrm{Nm}_{\mathbb{Q}}^K((K\otimes_\mathbb{Q} \mathbb{Q}_\rho)^\times)\to \mathrm{Gal}(K/\mathbb{Q})\to 1.
$$

Thus a local norm everywhere except possibly one place is a global norm.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x\in\mathbb{Q}$ such that $Y^2+3Z^2=5x+7$ has points in \mathbb{Q}_p for all places p of \mathbb{Q} except possibly one prime.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x\in\mathbb{Q}$ such that $Y^2+3Z^2=5x+7$ has points in \mathbb{Q}_p for all places p of $\mathbb Q$ except possibly one prime. Observe that

$$
(1)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 2^3,
$$

$$
(3)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 3^3,
$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x\in\mathbb{Q}$ such that $Y^2+3Z^2=5x+7$ has points in \mathbb{Q}_p for all places p of $\mathbb Q$ except possibly one prime. Observe that

$$
(1)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 2^3,
$$

$$
(3)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 3^3,
$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma. It suffices to find some $x \in \mathbb{Q}$ such that $x \equiv 1 \mod 2^3$ and $x \equiv 1 \mod 3^3$, so that

$$
5x + 7 = 5(23 \cdot 33 \cdot n + 1) + 7 = 22 \cdot 3 \cdot (90n + 1).
$$

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x\in\mathbb{Q}$ such that $Y^2+3Z^2=5x+7$ has points in \mathbb{Q}_p for all places p of $\mathbb Q$ except possibly one prime. Observe that

$$
(1)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 2^3,
$$

$$
(3)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 3^3,
$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma. It suffices to find some $x \in \mathbb{Q}$ such that $x \equiv 1 \mod 2^3$ and $x \equiv 1 \mod 3^3$, so that

$$
5x + 7 = 5(23 \cdot 33 \cdot n + 1) + 7 = 22 \cdot 3 \cdot (90n + 1).
$$

By Dirichlet's theorem, there is some *n* such that $90n + 1$ is prime.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x\in\mathbb{Q}$ such that $Y^2+3Z^2=5x+7$ has points in \mathbb{Q}_p for all places p of $\mathbb Q$ except possibly one prime. Observe that

$$
(1)2 + 3(1)2 \equiv 5(1) + 7 \mod 23,
$$

$$
(3)2 + 3(1)2 \equiv 5(1) + 7 \mod 33,
$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma. It suffices to find some $x \in \mathbb{Q}$ such that $x \equiv 1 \mod 2^3$ and $x \equiv 1 \mod 3^3$, so that

$$
5x + 7 = 5(23 \cdot 33 \cdot n + 1) + 7 = 22 \cdot 3 \cdot (90n + 1).
$$

By Dirichlet's theorem, there is some *n* such that $90n + 1$ is prime. For instance, $n=2$ gives $Y^2 + 3Z^2 = 2^2 \cdot 3 \cdot 181$, which has points in \mathbb{Q}_2 , \mathbb{Q}_3 , and \mathbb{R} , but also \mathbb{Q}_p for all primes p except 181.

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^\times$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$
Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \ldots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).
$$

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^\times$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$
Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \ldots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).
$$

Thus the Hasse principle conditionally holds for conic bundles over $\mathbb{P}^1_\mathbb{O}.$

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^\times$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$
Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \ldots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).
$$

Thus the Hasse principle conditionally holds for conic bundles over $\mathbb{P}^1_\mathbb{O}.$

Example (Iskovskikh, 1971)

Let V be the variety over $\mathbb Q$ given by $Y^2 + Z^2 = -(X-2)(X-3)$. Then V has points in $\mathbb R$ and $\mathbb Q_p$ for all primes p but no points in $\mathbb Q$.

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^\times$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$
Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \ldots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).
$$

Thus the Hasse principle conditionally holds for conic bundles over $\mathbb{P}^1_\mathbb{O}.$

Example (Iskovskikh, 1971)

Let V be the variety over $\mathbb Q$ given by $Y^2 + Z^2 = -(X-2)(X-3)$. Then V has points in $\mathbb R$ and $\mathbb Q_p$ for all primes p but no points in $\mathbb Q$. The failure of the Hasse principle can be detected by $(3 - X^2, -1) \in \mathrm{Br}(V)[2]$.

The Brauer–Manin obstruction

Let V be a variety over a global field K . There is a commutative diagram

The Brauer–Manin obstruction

Let V be a variety over a global field K . There is a commutative diagram

$$
\begin{array}{ccc}\n & V(K) \longrightarrow V(\mathbb{A}_{K}) \\
 & \downarrow & & \downarrow \\
0 \longrightarrow \text{Br}(K) \longrightarrow \bigoplus_{v} \text{Br}(K_{v}) \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0\n\end{array}
$$

For any $A \in Br(V)$, the Brauer-Manin set is

$$
V(\mathbb{A}_{K})^{A}:=\{(x_{v})_{v}\in V(\mathbb{A}_{K}):\sum_{v}\operatorname{inv}_{v}(x_{v}^{*}A)=0\}.
$$

.

The Brauer–Manin obstruction

Let V be a variety over a global field K. There is a commutative diagram

$$
\begin{array}{ccc}\n & V(K) \longrightarrow V(\mathbb{A}_{K}) \\
 & \downarrow & & \downarrow \\
0 \longrightarrow \text{Br}(K) \longrightarrow \bigoplus_{v} \text{Br}(K_{v}) \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0\n\end{array}
$$

For any $A \in Br(V)$, the Brauer-Manin set is

$$
V(\mathbb{A}_{K})^{A}:=\{(x_{v})_{v}\in V(\mathbb{A}_{K}):\sum_{v}\operatorname{inv}_{v}(x_{v}^{*}A)=0\}.
$$

Example (Iskovskikh, 1971) Let $A := (3 - X^2, -1) \in Br(V)$. For any $(x_v)_v \in V(\mathbb{A}_K)$, it can be shown that $\sum_{v} \text{inv}_{v}(x_{v}^{*}A) = \frac{1}{2}$, so that $V(K) \subseteq V(\mathbb{A}_{K})^{A} = \emptyset$.

.

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélène, 2003)

Let V be a rationally connected variety over a number field K. If $V(K) = \emptyset$, then $V(\mathbb{A}_K)^A = \emptyset$ for some $A \in \text{Br}(V)$.

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélène, 2003)

Let V be a rationally connected variety over a number field K. If $V(K) = \emptyset$, then $V(\mathbb{A}_K)^A = \emptyset$ for some $A \in \text{Br}(V)$.

This is known for conic bundles over $\mathbb{P}^1_\mathbb{O}$ with at most five geometric degenerate fibres, due to Colliot-Thélène–Sansuc–Swinnerton-Dyer (1987), Colliot-Thélène (1990), and Salberger–Skorobogatov (1991).

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélène, 2003)

Let V be a rationally connected variety over a number field K. If $V(K) = \emptyset$, then $V(\mathbb{A}_K)^A = \emptyset$ for some $A \in \text{Br}(V)$.

This is known for conic bundles over $\mathbb{P}^1_\mathbb{O}$ with at most five geometric degenerate fibres, due to Colliot-Thélène–Sansuc–Swinnerton-Dyer (1987), Colliot-Thélène (1990), and Salberger–Skorobogatov (1991).

Theorem (Colliot-Thélène–Swinnerton-Dyer, 1994) Assume Schinzel's hypothesis H. Then Colliot-Thélène's conjecture holds for Severi-Brauer bundles over $\mathbb{P}^1_{\mathbb{O}}$.