Schinzel's hypothesis H

David Ang

Open problems in number theory

Thursday, 31 October 2024

Some fun quotes

Skorobogatov-Morgan (2024):

A notoriously difficult conjecture on prime values of polynomials, deemed to be inaccessible in the current state of analytic number theory.

Some fun quotes

Skorobogatov-Morgan (2024):

A notoriously difficult conjecture on prime values of polynomials, deemed to be inaccessible in the current state of analytic number theory.

Bunyakovsky (1857):

Il est à présumer que la démonstration rigoureuse du théorème énoncé sur les progressions arithmétiques des ordres supérieurs conduirait, dans l'état actuel de la théorie des nombres, à des difficultés insurmontables; néanmoins, sa réalité ne peut pas être révoquée en doute.

Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let $a, b \in \mathbb{Z}$. Assume no primes p satisfy $p \mid a$ and $p \mid b$. Then there are infinitely many n such that an + b is prime.

Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let $a, b \in \mathbb{Z}$. Assume no primes p satisfy $p \mid a$ and $p \mid b$. Then there are infinitely many n such that an + b is prime.

Example (4X + 3)

n	0	1	2	3	4	5	6	7	8	9	10	11	12
4 <i>n</i> + 3	3	7	11	15	19	23	27	31	35	39	43	47	51
prime	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	

Primes in arithmetic progressions

Theorem (Dirichlet, 1837)

Let $a, b \in \mathbb{Z}$. Assume no primes p satisfy $p \mid a$ and $p \mid b$. Then there are infinitely many n such that an + b is prime.

Example (4X + 3)

n	0	1	2	3	4	5	6	7	8	9	10	11	12
4 <i>n</i> + 3	3	7	11	15	19	23	27	31	35	39	43	47	51
prime	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	

If there were a finite set $S := \{p \text{ prime } : p \equiv 3 \mod 4\}$, then

$$N := 2 + \prod_{p \in S} p^2 \equiv 3 \mod 4,$$

so N has a prime factor $q \equiv 3 \mod 4$ not in S, which is a contradiction.

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that f(n) is prime.

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that f(n) is prime.

This is Dirichlet's theorem when f(X) = aX + b.

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that f(n) is prime.

This is Dirichlet's theorem when f(X) = aX + b.

Example $(X^2 + 1)$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$n^2 + 1$	1	2	5	10	17	26	37	50	65	82	101	122	145
prime		\checkmark	\checkmark		\checkmark		\checkmark				\checkmark		

Conjecture (Bunyakovsky, 1857)

Let $f \in \mathbb{Z}[X]$ be irreducible. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that f(n) is prime.

This is Dirichlet's theorem when f(X) = aX + b.

Example $(X^2 + 1)$

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$n^2 + 1$	1	2	5	10	17	26	37	50	65	82	101	122	145
prime		\checkmark	\checkmark		\checkmark		\checkmark				\checkmark		

This is one of the four Landau's problems, amongst Goldbach's conjecture, the twin prime conjecture, and Legendre's conjecture.

Conjecture (Dickson, 1904)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that $a_1n + b_1, \ldots, a_kn + b_k$ are simultaneously prime.

Conjecture (Dickson, 1904)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that $a_1n + b_1, \ldots, a_kn + b_k$ are simultaneously prime.

This is the twin prime conjecture for X and X + 2.

Conjecture (Dickson, 1904)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that $a_1n + b_1, \ldots, a_kn + b_k$ are simultaneously prime.

This is the twin prime conjecture for X and X + 2.

Example (X and 2X + 1)

p	2	3	5	7	11	13	17	19	23	29	31	37	41
2p + 1	5	7	11	15	23	27	35	39	47	59	63	75	83
prime	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark			\checkmark

Conjecture (Dickson, 1904)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that $a_1n + b_1, \ldots, a_kn + b_k$ are simultaneously prime.

This is the twin prime conjecture for X and X + 2.

Example (X and 2X + 1)

р	2	3	5	7	11	13	17	19	23	29	31	37	41
2p + 1	5	7	11	15	23	27	35	39	47	59	63	75	83
prime	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark	\checkmark			\checkmark

This is the Germain prime conjecture, which implies that there are infinitely many composite Mersenne numbers, since $2p + 1 | 2^p - 1$ whenever $p \equiv 3 \mod 4$ is a Germain prime.

Conjecture (Hardy-Littlewood, 1923)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy " $p \mid f(n)$ for all n". Then

$$\# \left\{ n \leq N : \begin{array}{c} a_1 n + b_1, \dots, a_k n + b_k \\ \text{are simultaneously prime} \end{array} \right\} \sim C \cdot \frac{N}{\log^k N}.$$

Conjecture (Hardy-Littlewood, 1923)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy " $p \mid f(n)$ for all n". Then

$$\# \left\{ n \leq N : \begin{array}{c} a_1 n + b_1, \dots, a_k n + b_k \\ \text{are simultaneously prime} \end{array} \right\} \sim C \cdot \frac{N}{\log^k N}.$$

Here,

$$C:=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\#\{n\in\mathbb{F}_{p}:f(n)=0\}}{p}\right).$$

Conjecture (Hardy-Littlewood, 1923)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy " $p \mid f(n)$ for all n". Then

$$\# \left\{ n \leq N : \begin{array}{c} a_1 n + b_1, \dots, a_k n + b_k \\ \text{are simultaneously prime} \end{array} \right\} \sim C \cdot \frac{N}{\log^k N}.$$

Here,

$$C := \prod_{p} \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\#\{n \in \mathbb{F}_p : f(n) = 0\}}{p}\right).$$

If $f_1(X) = X$, then this is the prime number theorem that

$$\#\{n \le N : n \text{ is prime}\} \sim \frac{N}{\log N}$$

・ロット (日本) (日本) (日本)

Conjecture (Hardy-Littlewood, 1923)

Let $a_1, \ldots, a_k, b_1, \ldots, b_k \in \mathbb{Z}$. Set $f(X) := (a_1X + b_1) \cdots (a_kX + b_k)$. Assume no primes p satisfy " $p \mid f(n)$ for all n". Then

$$\# \left\{ n \leq N : \begin{array}{c} a_1 n + b_1, \dots, a_k n + b_k \\ \text{are simultaneously prime} \end{array} \right\} \sim C \cdot \frac{N}{\log^k N}.$$

Here,

$$C := \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\#\{n \in \mathbb{F}_p : f(n) = 0\}}{p}\right).$$

If $f_1(X) = X$, then this is the prime number theorem that

$$\#\{n \le N : n \text{ is prime}\} \sim \frac{N}{\log N}$$

If $f_1(X) = X$ and $f_2(X) = X + 2$, then C is the twin prime constant.

Simultaneous primes in polynomial sequences

Conjecture (Schinzel's hypothesis H, 1958)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ be irreducible. Set $f := f_1 \cdots f_k$. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that $f_1(n), \ldots, f_k(n)$ are simultaneously prime.

Simultaneous primes in polynomial sequences

Conjecture (Schinzel's hypothesis H, 1958)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ be irreducible. Set $f := f_1 \cdots f_k$. Assume no primes p satisfy "p | f(n) for all n". Then there are infinitely many n such that $f_1(n), \ldots, f_k(n)$ are simultaneously prime.

Conjecture (Bateman-Horn, 1962)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ be irreducible. Set $f := f_1 \cdots f_k$. Assume no primes p satisfy "p | f(n) for all n". Then

$$\#\left\{n \leq N: \begin{array}{c} f_1(n), \ldots, f_k(n) \\ \text{are simultaneously prime} \end{array}\right\} \sim C \cdot \frac{N}{\prod_i \deg f_i \cdot \log^k N}.$$

Here,

$$C := \prod_{p} \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\#\{n \in \mathbb{F}_p : f(n) = 0\}}{p}\right).$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (? 20 / 50

Theorem (Friedlander–Iwaniec, 1997)

There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Friedlander–Iwaniec, 1997) There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Green–Tao–Ziegler, 2006)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ such that $f_i(0) = 0$. Then there are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x + f_1(y), \ldots, x + f_k(y)$ are simultaneously prime.

Theorem (Friedlander–Iwaniec, 1997)

There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Green-Tao-Ziegler, 2006)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ such that $f_i(0) = 0$. Then there are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x + f_1(y), \ldots, x + f_k(y)$ are simultaneously prime.

Theorem (Bodin–Dèbes–Najib, 2019)

Let R be a characteristic zero UFD whose fraction field satisfies the product formula, and let $f_1, \ldots, f_k \in R[X, Y]$. Then there are $y \in R[X]$ such that $f_1(X, y(X)), \ldots, f_k(X, y(X))$ are simultaneously irreducible.

Theorem (Friedlander–Iwaniec, 1997)

There are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^4$ is prime.

Theorem (Green-Tao-Ziegler, 2006)

Let $f_1, \ldots, f_k \in \mathbb{Z}[X]$ such that $f_i(0) = 0$. Then there are infinitely many $(x, y) \in \mathbb{Z}^2$ such that $x + f_1(y), \ldots, x + f_k(y)$ are simultaneously prime.

Theorem (Bodin–Dèbes–Najib, 2019)

Let R be a characteristic zero UFD whose fraction field satisfies the product formula, and let $f_1, \ldots, f_k \in R[X, Y]$. Then there are $y \in R[X]$ such that $f_1(X, y(X)), \ldots, f_k(X, y(X))$ are simultaneously irreducible.

Example $(X^8 + t^3 \text{ over } \mathbb{F}_2[t])$ $(t^2+t+1)^8+t^3 = (t+1)(t^{15}+t^{14}+t^{13}+t^{12}+t^{11}+t^{10}+t^9+t^8+t^2+t+1).$

Genericity of simultaneous primes

Let $P_{d,N}$ be the set of $a_d X^d + \cdots + a_0 \in \mathbb{Z}[X]$ such that $|a_i| \leq N$.

Genericity of simultaneous primes

Let $P_{d,N}$ be the set of $a_d X^d + \cdots + a_0 \in \mathbb{Z}[X]$ such that $|a_i| \leq N$. Theorem (Skorobogatov–Sofos, 2023) Let $S_{d,N}$ be the set of $f \in P_{d,N}$ such that $X^p - X \nmid f$ in all $\mathbb{F}_p[X]$. Then

$$\lim_{N\to\infty}\frac{\#\left\{(f_1,\ldots,f_k)\in S_{d,N}^k:\begin{array}{c}\exists n\in\mathbb{Z},\ f_1(n),\ldots,f_k(n)\\are\ simultaneously\ prime\end{array}\right\}}{\#S_{d,N}^k}=1.$$

Genericity of simultaneous primes

Let $P_{d,N}$ be the set of $a_d X^d + \cdots + a_0 \in \mathbb{Z}[X]$ such that $|a_i| \leq N$. Theorem (Skorobogatov–Sofos, 2023) Let $S_{d,N}$ be the set of $f \in P_{d,N}$ such that $X^p - X \nmid f$ in all $\mathbb{F}_p[X]$. Then

$$\lim_{N\to\infty} \frac{\#\left\{(f_1,\ldots,f_k)\in S_{d,N}^k: \begin{array}{c} \exists n\in\mathbb{Z}, \ f_1(n),\ldots,f_k(n)\\ are \ simultaneously \ prime \end{array}\right\}}{\#S_{d,N}^k} = 1.$$

Theorem (Skorobogatov–Sofos, 2023)

Let K be a cyclic number field with integral basis e_1, \ldots, e_m of \mathcal{O}_K . Then

$$\lim_{N \to \infty} \frac{\# \left\{ f \in P_{d,N} : \begin{array}{c} \operatorname{Nm}_{\mathbb{Q}}^{K}(e_{1}X_{1} + \dots + e_{m}X_{m}) = f(X) \\ \begin{array}{c} has \text{ a rational point} \end{array} \right\}}{\# P_{d,N}} = 1.$$

27 / 50

イロト イポト イヨト イヨト 三日

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1, \ldots, a_m \in \mathbb{Q}$. Then the Hasse principle holds for

$$a_1X_1^2+\cdots+a_mX_m^2$$

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1, \ldots, a_m \in \mathbb{Q}$. Then the Hasse principle holds for

$$a_1X_1^2+\cdots+a_mX_m^2$$

The proof for m = 4 reduces to the proof for m = 3 by Dirichlet's theorem and the fundamental exact sequence of global class field theory.

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1, \ldots, a_m \in \mathbb{Q}$. Then the Hasse principle holds for

$$a_1X_1^2+\cdots+a_mX_m^2$$

The proof for m = 4 reduces to the proof for m = 3 by Dirichlet's theorem and the fundamental exact sequence of global class field theory.

Theorem (Hasse norm theorem)

Let K be a cyclic number field. Then there is a short exact sequence

$$1 \to \mathbb{Q}^{\times}/\mathrm{Nm}_{\mathbb{Q}}^{K}(K^{\times}) \to \bigoplus_{\rho \leq \infty} \mathbb{Q}_{\rho}^{\times}/\mathrm{Nm}_{\mathbb{Q}}^{K}((K \otimes_{\mathbb{Q}} \mathbb{Q}_{\rho})^{\times}) \to \mathrm{Gal}(K/\mathbb{Q}) \to 1.$$

The Hasse principle holds for a variety V over a global field K if it has a point in K whenever it has points in K_v for all places v of K.

Theorem (Hasse–Minkowski theorem)

Let $a_1,\ldots,a_m\in\mathbb{Q}.$ Then the Hasse principle holds for

$$a_1X_1^2+\cdots+a_mX_m^2$$

The proof for m = 4 reduces to the proof for m = 3 by Dirichlet's theorem and the fundamental exact sequence of global class field theory.

Theorem (Hasse norm theorem)

Let K be a cyclic number field. Then there is a short exact sequence

$$1 \to \mathbb{Q}^{\times}/\mathrm{Nm}_{\mathbb{Q}}^{K}(K^{\times}) \to \bigoplus_{\rho \leq \infty} \mathbb{Q}_{\rho}^{\times}/\mathrm{Nm}_{\mathbb{Q}}^{K}((K \otimes_{\mathbb{Q}} \mathbb{Q}_{\rho})^{\times}) \to \mathrm{Gal}(K/\mathbb{Q}) \to 1.$$

Thus a local norm everywhere except possibly one place is a global norm.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x \in \mathbb{Q}$ such that $Y^2 + 3Z^2 = 5x + 7$ has points in \mathbb{Q}_p for all places p of \mathbb{Q} except possibly one prime.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x \in \mathbb{Q}$ such that $Y^2 + 3Z^2 = 5x + 7$ has points in \mathbb{Q}_p for all places p of \mathbb{Q} except possibly one prime. Observe that

$$(1)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 2^3,$$

$$(3)^2 + 3(1)^2 \equiv 5(1) + 7 \mod 3^3,$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma.

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x \in \mathbb{Q}$ such that $Y^2 + 3Z^2 = 5x + 7$ has points in \mathbb{Q}_p for all places p of \mathbb{Q} except possibly one prime. Observe that

$$\begin{split} (1)^2 + 3(1)^2 &\equiv 5(1) + 7 \mod 2^3, \\ (3)^2 + 3(1)^2 &\equiv 5(1) + 7 \mod 3^3, \end{split}$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma. It suffices to find some $x \in \mathbb{Q}$ such that $x \equiv 1 \mod 2^3$ and $x \equiv 1 \mod 3^3$, so that

$$5x + 7 = 5(2^3 \cdot 3^3 \cdot n + 1) + 7 = 2^2 \cdot 3 \cdot (90n + 1).$$

Application of Dirichlet's theorem

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x \in \mathbb{Q}$ such that $Y^2 + 3Z^2 = 5x + 7$ has points in \mathbb{Q}_p for all places p of \mathbb{Q} except possibly one prime. Observe that

$$\begin{split} (1)^2 + 3(1)^2 &\equiv 5(1) + 7 \mod 2^3, \\ (3)^2 + 3(1)^2 &\equiv 5(1) + 7 \mod 3^3, \end{split}$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma. It suffices to find some $x \in \mathbb{Q}$ such that $x \equiv 1 \mod 2^3$ and $x \equiv 1 \mod 3^3$, so that

$$5x + 7 = 5(2^3 \cdot 3^3 \cdot n + 1) + 7 = 2^2 \cdot 3 \cdot (90n + 1).$$

By Dirichlet's theorem, there is some *n* such that 90n + 1 is prime.

Application of Dirichlet's theorem

Example $(Y^2 + 3Z^2 = 5X + 7)$

Claim that the Hasse principle holds. By the Hasse norm theorem, it suffices to find some $x \in \mathbb{Q}$ such that $Y^2 + 3Z^2 = 5x + 7$ has points in \mathbb{Q}_p for all places p of \mathbb{Q} except possibly one prime. Observe that

$$\begin{split} (1)^2 + 3(1)^2 &\equiv 5(1) + 7 \mod 2^3, \\ (3)^2 + 3(1)^2 &\equiv 5(1) + 7 \mod 3^3, \end{split}$$

so it has points in \mathbb{Q}_2 and \mathbb{Q}_3 by Hensel's lemma. It suffices to find some $x \in \mathbb{Q}$ such that $x \equiv 1 \mod 2^3$ and $x \equiv 1 \mod 3^3$, so that

$$5x + 7 = 5(2^3 \cdot 3^3 \cdot n + 1) + 7 = 2^2 \cdot 3 \cdot (90n + 1).$$

By Dirichlet's theorem, there is some *n* such that 90n + 1 is prime. For instance, n = 2 gives $Y^2 + 3Z^2 = 2^2 \cdot 3 \cdot 181$, which has points in \mathbb{Q}_2 , \mathbb{Q}_3 , and \mathbb{R} , but also \mathbb{Q}_p for all primes *p* except 181.

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^{\times}$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \dots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).$$

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^{\times}$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \dots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).$$

Thus the Hasse principle conditionally holds for conic bundles over $\mathbb{P}^1_{\mathbb{O}}$.

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène–Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^{\times}$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \dots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).$$

Thus the Hasse principle conditionally holds for conic bundles over $\mathbb{P}^1_{\mathbb{Q}}$.

Example (Iskovskikh, 1971)

Let V be the variety over \mathbb{Q} given by $Y^2 + Z^2 = -(X-2)(X-3)$. Then V has points in \mathbb{R} and \mathbb{Q}_p for all primes p but no points in \mathbb{Q} .

Dirichlet's theorem can be replaced by assuming Schinzel's hypothesis H.

Theorem (Colliot-Thélène-Sansuc, 1982)

Let $a_1, \ldots, a_k \in \mathbb{Q}^{\times}$, and let $f_1, \ldots, f_k \in \mathbb{Q}[X]$ be irreducible. Assume Schinzel's hypothesis H. Then the Hasse principle holds for

$$Y_1^2 + a_1 Z_1^2 = f_1(X), \qquad \dots, \qquad Y_k^2 + a_k Z_k^2 = f_k(X).$$

Thus the Hasse principle conditionally holds for conic bundles over $\mathbb{P}^1_{\mathbb{Q}}$.

Example (lskovskikh, 1971)

Let V be the variety over \mathbb{Q} given by $Y^2 + Z^2 = -(X-2)(X-3)$. Then V has points in \mathbb{R} and \mathbb{Q}_p for all primes p but no points in \mathbb{Q} . The failure of the Hasse principle can be detected by $(3 - X^2, -1) \in Br(V)[2]$.

The Brauer-Manin obstruction

Let V be a variety over a global field K. There is a commutative diagram

$$V(\mathcal{K}) \longrightarrow V(\mathbb{A}_{\mathcal{K}})$$

$$\downarrow \qquad (-)^* \downarrow$$

$$0 \longrightarrow \operatorname{Br}(\mathcal{K}) \longrightarrow \bigoplus_{\nu} \operatorname{Br}(\mathcal{K}_{\nu}) \xrightarrow{\operatorname{inv}_{\nu}} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

The Brauer–Manin obstruction

Let V be a variety over a global field K. There is a commutative diagram

$$V(\mathcal{K}) \longrightarrow V(\mathbb{A}_{\mathcal{K}})$$

$$\downarrow \qquad (-)^{*} \downarrow$$

$$0 \longrightarrow \operatorname{Br}(\mathcal{K}) \longrightarrow \bigoplus_{\nu} \operatorname{Br}(\mathcal{K}_{\nu}) \xrightarrow{\operatorname{inv}_{\nu}} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

For any $A \in Br(V)$, the Brauer-Manin set is

$$V(\mathbb{A}_{\mathcal{K}})^{\mathcal{A}} := \{(x_{\nu})_{\nu} \in V(\mathbb{A}_{\mathcal{K}}) : \sum_{\nu} \operatorname{inv}_{\nu}(x_{\nu}^* \mathcal{A}) = 0\}.$$

٠

The Brauer-Manin obstruction

Let V be a variety over a global field K. There is a commutative diagram

$$V(\mathcal{K}) \longrightarrow V(\mathbb{A}_{\mathcal{K}})$$

$$\downarrow \qquad (-)^{*} \downarrow$$

$$0 \longrightarrow \operatorname{Br}(\mathcal{K}) \longrightarrow \bigoplus_{\nu} \operatorname{Br}(\mathcal{K}_{\nu}) \xrightarrow{\operatorname{inv}_{\nu}} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

For any $A \in Br(V)$, the Brauer-Manin set is

$$V(\mathbb{A}_{\mathcal{K}})^{\mathcal{A}} := \{(x_{\nu})_{\nu} \in V(\mathbb{A}_{\mathcal{K}}) : \sum_{\nu} \operatorname{inv}_{\nu}(x_{\nu}^* \mathcal{A}) = 0\}.$$

Example (lskovskikh, 1971) Let $A := (3 - X^2, -1) \in Br(V)$. For any $(x_v)_v \in V(\mathbb{A}_K)$, it can be shown that $\sum_v inv_v(x_v^*A) = \frac{1}{2}$, so that $V(K) \subseteq V(\mathbb{A}_K)^A = \emptyset$.

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélène, 2003)

Let V be a rationally connected variety over a number field K. If $V(K) = \emptyset$, then $V(\mathbb{A}_K)^A = \emptyset$ for some $A \in Br(V)$.

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélène, 2003)

Let V be a rationally connected variety over a number field K. If $V(K) = \emptyset$, then $V(\mathbb{A}_K)^A = \emptyset$ for some $A \in Br(V)$.

This is known for conic bundles over $\mathbb{P}^1_{\mathbb{Q}}$ with at most five geometric degenerate fibres, due to Colliot-Thélène–Sansuc–Swinnerton-Dyer (1987), Colliot-Thélène (1990), and Salberger–Skorobogatov (1991).

A rationally connected variety is a smooth projective variety such that any two geometric points are connected by a rational curve.

Conjecture (Colliot-Thélène, 2003)

Let V be a rationally connected variety over a number field K. If $V(K) = \emptyset$, then $V(\mathbb{A}_K)^A = \emptyset$ for some $A \in Br(V)$.

This is known for conic bundles over $\mathbb{P}^1_{\mathbb{Q}}$ with at most five geometric degenerate fibres, due to Colliot-Thélène–Sansuc–Swinnerton-Dyer (1987), Colliot-Thélène (1990), and Salberger–Skorobogatov (1991).

Theorem (Colliot-Thélène-Swinnerton-Dyer, 1994)

Assume Schinzel's hypothesis H. Then Colliot-Thélène's conjecture holds for Severi–Brauer bundles over $\mathbb{P}^1_{\mathbb{Q}}$.