
Teaching a computer algebraic number theory

David Kurniadi Angdinata

London School of Geometry and Number Theory

Tuesday, 25 March 2025

1 / 80

Who am I?

I am an aspiring algebraic number theorist in the final year of my PhD.

My thesis will be on twisted L-functions of elliptic curves over global
fields, which arise in equivariant Birch and Swinnerton-Dyer conjectures.

In my first year, I was introduced to an interactive theorem prover called
Lean, and tried to formalise the Mordell–Weil theorem as a mini-project.

Over the past three years, I saw the potential: prominent mathematicians
involved in collaborative projects, massive investments from multinational
corporations and philanthropists, headlines of popular science journals.

Today, I will share my thoughts so far:

▶ why do interactive theorem proving?

▶ why do interactive theorem proving in Lean?

▶ why do algebraic number theory in Lean?

2 / 80

Who am I?

I am an aspiring algebraic number theorist in the final year of my PhD.

My thesis will be on twisted L-functions of elliptic curves over global
fields, which arise in equivariant Birch and Swinnerton-Dyer conjectures.

In my first year, I was introduced to an interactive theorem prover called
Lean, and tried to formalise the Mordell–Weil theorem as a mini-project.

Over the past three years, I saw the potential: prominent mathematicians
involved in collaborative projects, massive investments from multinational
corporations and philanthropists, headlines of popular science journals.

Today, I will share my thoughts so far:

▶ why do interactive theorem proving?

▶ why do interactive theorem proving in Lean?

▶ why do algebraic number theory in Lean?

3 / 80

Who am I?

I am an aspiring algebraic number theorist in the final year of my PhD.

My thesis will be on twisted L-functions of elliptic curves over global
fields, which arise in equivariant Birch and Swinnerton-Dyer conjectures.

In my first year, I was introduced to an interactive theorem prover called
Lean, and tried to formalise the Mordell–Weil theorem as a mini-project.

Over the past three years, I saw the potential: prominent mathematicians
involved in collaborative projects, massive investments from multinational
corporations and philanthropists, headlines of popular science journals.

Today, I will share my thoughts so far:

▶ why do interactive theorem proving?

▶ why do interactive theorem proving in Lean?

▶ why do algebraic number theory in Lean?

4 / 80

Who am I?

I am an aspiring algebraic number theorist in the final year of my PhD.

My thesis will be on twisted L-functions of elliptic curves over global
fields, which arise in equivariant Birch and Swinnerton-Dyer conjectures.

In my first year, I was introduced to an interactive theorem prover called
Lean, and tried to formalise the Mordell–Weil theorem as a mini-project.

Over the past three years, I saw the potential: prominent mathematicians
involved in collaborative projects, massive investments from multinational
corporations and philanthropists, headlines of popular science journals.

Today, I will share my thoughts so far:

▶ why do interactive theorem proving?

▶ why do interactive theorem proving in Lean?

▶ why do algebraic number theory in Lean?

5 / 80

Who am I?

I am an aspiring algebraic number theorist in the final year of my PhD.

My thesis will be on twisted L-functions of elliptic curves over global
fields, which arise in equivariant Birch and Swinnerton-Dyer conjectures.

In my first year, I was introduced to an interactive theorem prover called
Lean, and tried to formalise the Mordell–Weil theorem as a mini-project.

Over the past three years, I saw the potential: prominent mathematicians
involved in collaborative projects, massive investments from multinational
corporations and philanthropists, headlines of popular science journals.

Today, I will share my thoughts so far:

▶ why do interactive theorem proving?

▶ why do interactive theorem proving in Lean?

▶ why do algebraic number theory in Lean?

6 / 80

Interactive theorem proving

Wikipedia says that an interactive theorem prover is a software tool to
assist with the development of formal proofs by human–machine
collaboration, which involves some sort of interactive proof editor, or
other interface, with which a human can guide the search for proofs, the
details of which are stored in, and some steps provided by, a computer.

I think that interactive theorem proving is the experience of writing
mathematics in a rigorous language understood by a computer.

This includes axioms, definitions, theorems, proofs, and even techniques.

Behind the scenes, the compiler does some magic in the kernel to assess
the validity of the mathematics, akin to the role of journal reviewers.

In this sense, formalisations in interactive theorem provers are verified, in
contrast to computer algebra systems like Magma and SageMath.

7 / 80

Interactive theorem proving

Wikipedia says that an interactive theorem prover is a software tool to
assist with the development of formal proofs by human–machine
collaboration, which involves some sort of interactive proof editor, or
other interface, with which a human can guide the search for proofs, the
details of which are stored in, and some steps provided by, a computer.

I think that interactive theorem proving is the experience of writing
mathematics in a rigorous language understood by a computer.

This includes axioms, definitions, theorems, proofs, and even techniques.

Behind the scenes, the compiler does some magic in the kernel to assess
the validity of the mathematics, akin to the role of journal reviewers.

In this sense, formalisations in interactive theorem provers are verified, in
contrast to computer algebra systems like Magma and SageMath.

8 / 80

Interactive theorem proving

Wikipedia says that an interactive theorem prover is a software tool to
assist with the development of formal proofs by human–machine
collaboration, which involves some sort of interactive proof editor, or
other interface, with which a human can guide the search for proofs, the
details of which are stored in, and some steps provided by, a computer.

I think that interactive theorem proving is the experience of writing
mathematics in a rigorous language understood by a computer.

This includes axioms, definitions, theorems, proofs, and even techniques.

Behind the scenes, the compiler does some magic in the kernel to assess
the validity of the mathematics, akin to the role of journal reviewers.

In this sense, formalisations in interactive theorem provers are verified, in
contrast to computer algebra systems like Magma and SageMath.

9 / 80

Interactive theorem proving

Wikipedia says that an interactive theorem prover is a software tool to
assist with the development of formal proofs by human–machine
collaboration, which involves some sort of interactive proof editor, or
other interface, with which a human can guide the search for proofs, the
details of which are stored in, and some steps provided by, a computer.

I think that interactive theorem proving is the experience of writing
mathematics in a rigorous language understood by a computer.

This includes axioms, definitions, theorems, proofs, and even techniques.

Behind the scenes, the compiler does some magic in the kernel to assess
the validity of the mathematics, akin to the role of journal reviewers.

In this sense, formalisations in interactive theorem provers are verified, in
contrast to computer algebra systems like Magma and SageMath.

10 / 80

Interactive theorem proving

Wikipedia says that an interactive theorem prover is a software tool to
assist with the development of formal proofs by human–machine
collaboration, which involves some sort of interactive proof editor, or
other interface, with which a human can guide the search for proofs, the
details of which are stored in, and some steps provided by, a computer.

I think that interactive theorem proving is the experience of writing
mathematics in a rigorous language understood by a computer.

This includes axioms, definitions, theorems, proofs, and even techniques.

Behind the scenes, the compiler does some magic in the kernel to assess
the validity of the mathematics, akin to the role of journal reviewers.

In this sense, formalisations in interactive theorem provers are verified, in
contrast to computer algebra systems like Magma and SageMath.

11 / 80

Basic example

Here is a theorem in Lean that im(f) ≤ ker(f) whenever g ◦ f = 1.

variable {A B C : Type} [Group A] [Group B] [Group C]

def ker (f : A →* B) : Subgroup A where
carrier := {a : A | f a = 1}
one_mem’ := by simp
inv_mem’ := by simp
mul_mem’ := by aesop

def im (f : A →* B) : Subgroup B where
carrier := {b : B | ∃ a : A, b = f a}
one_mem’ := ⟨1, by simp⟩
inv_mem’ := fun ⟨a, _⟩ 7→ ⟨a−1, by aesop⟩
mul_mem’ := fun ⟨a, _⟩ ⟨b, _⟩ 7→ ⟨a * b, by aesop⟩

theorem im_le_ker {f : A →* B} {g : B →* C} (h : ∀ a : A, g (f a) = 1) :
im f ≤ ker g := by == Goal is ∀ b : B, (∃ a : A, b = f a) → (g b = 1)

intro b hb == Goal is g b = 1
== New hypotheses (b : B) (hb : ∃ a : A, (b = f a))

rcases hb with ⟨a, ha⟩ == Goal is g b = 1
== New hypotheses (b : B) (a : A) (ha : b = f a)

rewrite [ha] == Goal is g (f a) = 1
exact h a == No goals!

12 / 80

Notable examples

Historically, they were used to check proofs that drew scepticism.

▶ The proof of the four colour theorem by Appel and Haken (1976)
involved analysing 1834 reducible configurations of maps manually.
Gonthier et al (2005) formalised it in Coq.

▶ The proof of the odd order theorem by Feit and Thompson in 1960
involved complicated arguments in group theory spanning 255 pages.
Gonthier et al (2012) formalised it in Coq.

▶ The proof of the Kepler conjecture by Hales (1998) involved solving
100000 linear programming problems. Hales started the Flyspeck
project (2003) to formalise it in Coq, and completed it in 11 years.

▶ The field of condensed mathematics was developed by Clausen and
Scholze (2019). Scholze started the liquid tensor experiment
(2020) to formalise a technical lemma on liquid vector spaces in
Lean, and Commelin et al completed it in 20 months.

▶ The polynomial Freiman–Ruzsa conjecture was proven by Gowers,
Green, Manners, and Tao (Nov 2023). Tao started a formalisation
project in Lean 4 days later, and completed it in 3 weeks.

13 / 80

Notable examples

Historically, they were used to check proofs that drew scepticism.

▶ The proof of the four colour theorem by Appel and Haken (1976)
involved analysing 1834 reducible configurations of maps manually.
Gonthier et al (2005) formalised it in Coq.

▶ The proof of the odd order theorem by Feit and Thompson in 1960
involved complicated arguments in group theory spanning 255 pages.
Gonthier et al (2012) formalised it in Coq.

▶ The proof of the Kepler conjecture by Hales (1998) involved solving
100000 linear programming problems. Hales started the Flyspeck
project (2003) to formalise it in Coq, and completed it in 11 years.

▶ The field of condensed mathematics was developed by Clausen and
Scholze (2019). Scholze started the liquid tensor experiment
(2020) to formalise a technical lemma on liquid vector spaces in
Lean, and Commelin et al completed it in 20 months.

▶ The polynomial Freiman–Ruzsa conjecture was proven by Gowers,
Green, Manners, and Tao (Nov 2023). Tao started a formalisation
project in Lean 4 days later, and completed it in 3 weeks.

14 / 80

Notable examples

Historically, they were used to check proofs that drew scepticism.

▶ The proof of the four colour theorem by Appel and Haken (1976)
involved analysing 1834 reducible configurations of maps manually.
Gonthier et al (2005) formalised it in Coq.

▶ The proof of the odd order theorem by Feit and Thompson in 1960
involved complicated arguments in group theory spanning 255 pages.
Gonthier et al (2012) formalised it in Coq.

▶ The proof of the Kepler conjecture by Hales (1998) involved solving
100000 linear programming problems. Hales started the Flyspeck
project (2003) to formalise it in Coq, and completed it in 11 years.

▶ The field of condensed mathematics was developed by Clausen and
Scholze (2019). Scholze started the liquid tensor experiment
(2020) to formalise a technical lemma on liquid vector spaces in
Lean, and Commelin et al completed it in 20 months.

▶ The polynomial Freiman–Ruzsa conjecture was proven by Gowers,
Green, Manners, and Tao (Nov 2023). Tao started a formalisation
project in Lean 4 days later, and completed it in 3 weeks.

15 / 80

Notable examples

Historically, they were used to check proofs that drew scepticism.

▶ The proof of the four colour theorem by Appel and Haken (1976)
involved analysing 1834 reducible configurations of maps manually.
Gonthier et al (2005) formalised it in Coq.

▶ The proof of the odd order theorem by Feit and Thompson in 1960
involved complicated arguments in group theory spanning 255 pages.
Gonthier et al (2012) formalised it in Coq.

▶ The proof of the Kepler conjecture by Hales (1998) involved solving
100000 linear programming problems. Hales started the Flyspeck
project (2003) to formalise it in Coq, and completed it in 11 years.

▶ The field of condensed mathematics was developed by Clausen and
Scholze (2019). Scholze started the liquid tensor experiment
(2020) to formalise a technical lemma on liquid vector spaces in
Lean, and Commelin et al completed it in 20 months.

▶ The polynomial Freiman–Ruzsa conjecture was proven by Gowers,
Green, Manners, and Tao (Nov 2023). Tao started a formalisation
project in Lean 4 days later, and completed it in 3 weeks.

16 / 80

Notable examples

Historically, they were used to check proofs that drew scepticism.

▶ The proof of the four colour theorem by Appel and Haken (1976)
involved analysing 1834 reducible configurations of maps manually.
Gonthier et al (2005) formalised it in Coq.

▶ The proof of the odd order theorem by Feit and Thompson in 1960
involved complicated arguments in group theory spanning 255 pages.
Gonthier et al (2012) formalised it in Coq.

▶ The proof of the Kepler conjecture by Hales (1998) involved solving
100000 linear programming problems. Hales started the Flyspeck
project (2003) to formalise it in Coq, and completed it in 11 years.

▶ The field of condensed mathematics was developed by Clausen and
Scholze (2019). Scholze started the liquid tensor experiment
(2020) to formalise a technical lemma on liquid vector spaces in
Lean, and Commelin et al completed it in 20 months.

▶ The polynomial Freiman–Ruzsa conjecture was proven by Gowers,
Green, Manners, and Tao (Nov 2023). Tao started a formalisation
project in Lean 4 days later, and completed it in 3 weeks.

17 / 80

Notable examples

Historically, they were used to check proofs that drew scepticism.

▶ The proof of the four colour theorem by Appel and Haken (1976)
involved analysing 1834 reducible configurations of maps manually.
Gonthier et al (2005) formalised it in Coq.

▶ The proof of the odd order theorem by Feit and Thompson in 1960
involved complicated arguments in group theory spanning 255 pages.
Gonthier et al (2012) formalised it in Coq.

▶ The proof of the Kepler conjecture by Hales (1998) involved solving
100000 linear programming problems. Hales started the Flyspeck
project (2003) to formalise it in Coq, and completed it in 11 years.

▶ The field of condensed mathematics was developed by Clausen and
Scholze (2019). Scholze started the liquid tensor experiment
(2020) to formalise a technical lemma on liquid vector spaces in
Lean, and Commelin et al completed it in 20 months.

▶ The polynomial Freiman–Ruzsa conjecture was proven by Gowers,
Green, Manners, and Tao (Nov 2023). Tao started a formalisation
project in Lean 4 days later, and completed it in 3 weeks.

18 / 80

Current motivations

Nowadays, they have evolved to serve many other purposes.

▶ They allow for large-scale collaborations, akin to Gowers’s Polymath
Project, but organisation is done via a version control system, and
the human moderator is replaced with the language compiler.
Example: Tao’s equational relations project.

▶ They train artificial intelligence by verifying arguments generated by
neural networks when presented with mathematical problems.
Example: Google Deepmind’s AlphaProof model.

▶ They build self-consistent databases of mathematics for search
engines, akin to de Jong’s Stacks Project in algebraic geometry.
Example: Peking University BICMR’s LeanSearch engine.

▶ They present surprising artifacts, such as unnecessary assumptions,
simplification of arguments, or even issues in existing literature.
Example: Chambert-Loir and Frutos-Fernández discovered an
incorrect lemma in a fundamental paper on divided power structures
(Dec 2024), which temporarily broke crystalline cohomology!

▶ They are fun! Example: I am addicted.

19 / 80

Current motivations

Nowadays, they have evolved to serve many other purposes.

▶ They allow for large-scale collaborations, akin to Gowers’s Polymath
Project, but organisation is done via a version control system, and
the human moderator is replaced with the language compiler.
Example: Tao’s equational relations project.

▶ They train artificial intelligence by verifying arguments generated by
neural networks when presented with mathematical problems.
Example: Google Deepmind’s AlphaProof model.

▶ They build self-consistent databases of mathematics for search
engines, akin to de Jong’s Stacks Project in algebraic geometry.
Example: Peking University BICMR’s LeanSearch engine.

▶ They present surprising artifacts, such as unnecessary assumptions,
simplification of arguments, or even issues in existing literature.
Example: Chambert-Loir and Frutos-Fernández discovered an
incorrect lemma in a fundamental paper on divided power structures
(Dec 2024), which temporarily broke crystalline cohomology!

▶ They are fun! Example: I am addicted.

20 / 80

Current motivations

Nowadays, they have evolved to serve many other purposes.

▶ They allow for large-scale collaborations, akin to Gowers’s Polymath
Project, but organisation is done via a version control system, and
the human moderator is replaced with the language compiler.
Example: Tao’s equational relations project.

▶ They train artificial intelligence by verifying arguments generated by
neural networks when presented with mathematical problems.
Example: Google Deepmind’s AlphaProof model.

▶ They build self-consistent databases of mathematics for search
engines, akin to de Jong’s Stacks Project in algebraic geometry.
Example: Peking University BICMR’s LeanSearch engine.

▶ They present surprising artifacts, such as unnecessary assumptions,
simplification of arguments, or even issues in existing literature.
Example: Chambert-Loir and Frutos-Fernández discovered an
incorrect lemma in a fundamental paper on divided power structures
(Dec 2024), which temporarily broke crystalline cohomology!

▶ They are fun! Example: I am addicted.

21 / 80

Current motivations

Nowadays, they have evolved to serve many other purposes.

▶ They allow for large-scale collaborations, akin to Gowers’s Polymath
Project, but organisation is done via a version control system, and
the human moderator is replaced with the language compiler.
Example: Tao’s equational relations project.

▶ They train artificial intelligence by verifying arguments generated by
neural networks when presented with mathematical problems.
Example: Google Deepmind’s AlphaProof model.

▶ They build self-consistent databases of mathematics for search
engines, akin to de Jong’s Stacks Project in algebraic geometry.
Example: Peking University BICMR’s LeanSearch engine.

▶ They present surprising artifacts, such as unnecessary assumptions,
simplification of arguments, or even issues in existing literature.
Example: Chambert-Loir and Frutos-Fernández discovered an
incorrect lemma in a fundamental paper on divided power structures
(Dec 2024), which temporarily broke crystalline cohomology!

▶ They are fun! Example: I am addicted.

22 / 80

Current motivations

Nowadays, they have evolved to serve many other purposes.

▶ They allow for large-scale collaborations, akin to Gowers’s Polymath
Project, but organisation is done via a version control system, and
the human moderator is replaced with the language compiler.
Example: Tao’s equational relations project.

▶ They train artificial intelligence by verifying arguments generated by
neural networks when presented with mathematical problems.
Example: Google Deepmind’s AlphaProof model.

▶ They build self-consistent databases of mathematics for search
engines, akin to de Jong’s Stacks Project in algebraic geometry.
Example: Peking University BICMR’s LeanSearch engine.

▶ They present surprising artifacts, such as unnecessary assumptions,
simplification of arguments, or even issues in existing literature.
Example: Chambert-Loir and Frutos-Fernández discovered an
incorrect lemma in a fundamental paper on divided power structures
(Dec 2024), which temporarily broke crystalline cohomology!

▶ They are fun! Example: I am addicted.

23 / 80

Current motivations

Nowadays, they have evolved to serve many other purposes.

▶ They allow for large-scale collaborations, akin to Gowers’s Polymath
Project, but organisation is done via a version control system, and
the human moderator is replaced with the language compiler.
Example: Tao’s equational relations project.

▶ They train artificial intelligence by verifying arguments generated by
neural networks when presented with mathematical problems.
Example: Google Deepmind’s AlphaProof model.

▶ They build self-consistent databases of mathematics for search
engines, akin to de Jong’s Stacks Project in algebraic geometry.
Example: Peking University BICMR’s LeanSearch engine.

▶ They present surprising artifacts, such as unnecessary assumptions,
simplification of arguments, or even issues in existing literature.
Example: Chambert-Loir and Frutos-Fernández discovered an
incorrect lemma in a fundamental paper on divided power structures
(Dec 2024), which temporarily broke crystalline cohomology!

▶ They are fun! Example: I am addicted.

24 / 80

Lean theorem prover

Lean is one of the many interactive theorem provers
commonly used for formalising pure mathematics:
Isabelle, HOL Light, Coq, Metamath, Mizar, etc.

The first version of Lean was launched in 2013 by Leonardo de Moura at
Microsoft Research and later at Amazon Web Services, with current
development supported by the Lean Focused Research Organisation.

The current version of Lean uses a dependent type theory called calculus
of constructions with inductive types, unlike Isabelle and HOL Light.

Furthermore, it is also a functional programming language, written in
C++ and Lean, with support for multithreading and metaprogramming.

Finally, it supports Unicode symbols, and can be run in common editors
like Visual Studio Code, Emacs, and Neovim.

25 / 80

Lean theorem prover

Lean is one of the many interactive theorem provers
commonly used for formalising pure mathematics:
Isabelle, HOL Light, Coq, Metamath, Mizar, etc.

The first version of Lean was launched in 2013 by Leonardo de Moura at
Microsoft Research and later at Amazon Web Services, with current
development supported by the Lean Focused Research Organisation.

The current version of Lean uses a dependent type theory called calculus
of constructions with inductive types, unlike Isabelle and HOL Light.

Furthermore, it is also a functional programming language, written in
C++ and Lean, with support for multithreading and metaprogramming.

Finally, it supports Unicode symbols, and can be run in common editors
like Visual Studio Code, Emacs, and Neovim.

26 / 80

Lean theorem prover

Lean is one of the many interactive theorem provers
commonly used for formalising pure mathematics:
Isabelle, HOL Light, Coq, Metamath, Mizar, etc.

The first version of Lean was launched in 2013 by Leonardo de Moura at
Microsoft Research and later at Amazon Web Services, with current
development supported by the Lean Focused Research Organisation.

The current version of Lean uses a dependent type theory called calculus
of constructions with inductive types, unlike Isabelle and HOL Light.

Furthermore, it is also a functional programming language, written in
C++ and Lean, with support for multithreading and metaprogramming.

Finally, it supports Unicode symbols, and can be run in common editors
like Visual Studio Code, Emacs, and Neovim.

27 / 80

Lean theorem prover

Lean is one of the many interactive theorem provers
commonly used for formalising pure mathematics:
Isabelle, HOL Light, Coq, Metamath, Mizar, etc.

The first version of Lean was launched in 2013 by Leonardo de Moura at
Microsoft Research and later at Amazon Web Services, with current
development supported by the Lean Focused Research Organisation.

The current version of Lean uses a dependent type theory called calculus
of constructions with inductive types, unlike Isabelle and HOL Light.

Furthermore, it is also a functional programming language, written in
C++ and Lean, with support for multithreading and metaprogramming.

Finally, it supports Unicode symbols, and can be run in common editors
like Visual Studio Code, Emacs, and Neovim.

28 / 80

Lean theorem prover

Lean is one of the many interactive theorem provers
commonly used for formalising pure mathematics:
Isabelle, HOL Light, Coq, Metamath, Mizar, etc.

The first version of Lean was launched in 2013 by Leonardo de Moura at
Microsoft Research and later at Amazon Web Services, with current
development supported by the Lean Focused Research Organisation.

The current version of Lean uses a dependent type theory called calculus
of constructions with inductive types, unlike Isabelle and HOL Light.

Furthermore, it is also a functional programming language, written in
C++ and Lean, with support for multithreading and metaprogramming.

Finally, it supports Unicode symbols, and can be run in common editors
like Visual Studio Code, Emacs, and Neovim.

29 / 80

Lean’s mathematical community

I think the main appeal of Lean is its mathematical community, which
arose from purely sociological factors: cleanliness of language syntax,
good communication with developers, amazing support from community,
launch of collaborative projects, interest from Fields Medallists, etc.

As a result, the community embarked on many collaborative projects:

▶ perfectoid spaces by Buzzard, Commelin, and Massot (2018 – 2020)

▶ sphere eversion by Massot, Nash, and van Doorn (2020 – 2023)

▶ Fermat’s last theorem for regular primes by Best, Birkbeck, Brasca,
Rodriguez, van de Velde, and Yang (2023 – 2024)

▶ local class field theory by Frutos-Fernández and Nuccio (Sep 2022 –)

▶ prime number theorem and... led by Kontorovich (Jan 2024 –)

▶ analytic number theory exponent database led by Tao (Aug 2024 –)

▶ infinity cosmos led by Riehl (Sep 2024 –)

▶ Fermat’s last theorem led by Buzzard (Oct 2024 –)

30 / 80

Lean’s mathematical community

I think the main appeal of Lean is its mathematical community, which
arose from purely sociological factors: cleanliness of language syntax,
good communication with developers, amazing support from community,
launch of collaborative projects, interest from Fields Medallists, etc.

As a result, the community embarked on many collaborative projects:

▶ perfectoid spaces by Buzzard, Commelin, and Massot (2018 – 2020)

▶ sphere eversion by Massot, Nash, and van Doorn (2020 – 2023)

▶ Fermat’s last theorem for regular primes by Best, Birkbeck, Brasca,
Rodriguez, van de Velde, and Yang (2023 – 2024)

▶ local class field theory by Frutos-Fernández and Nuccio (Sep 2022 –)

▶ prime number theorem and... led by Kontorovich (Jan 2024 –)

▶ analytic number theory exponent database led by Tao (Aug 2024 –)

▶ infinity cosmos led by Riehl (Sep 2024 –)

▶ Fermat’s last theorem led by Buzzard (Oct 2024 –)

31 / 80

Lean’s mathematical community

I think the main appeal of Lean is its mathematical community, which
arose from purely sociological factors: cleanliness of language syntax,
good communication with developers, amazing support from community,
launch of collaborative projects, interest from Fields Medallists, etc.

As a result, the community embarked on many collaborative projects:

▶ perfectoid spaces by Buzzard, Commelin, and Massot (2018 – 2020)

▶ sphere eversion by Massot, Nash, and van Doorn (2020 – 2023)

▶ Fermat’s last theorem for regular primes by Best, Birkbeck, Brasca,
Rodriguez, van de Velde, and Yang (2023 – 2024)

▶ local class field theory by Frutos-Fernández and Nuccio (Sep 2022 –)

▶ prime number theorem and... led by Kontorovich (Jan 2024 –)

▶ analytic number theory exponent database led by Tao (Aug 2024 –)

▶ infinity cosmos led by Riehl (Sep 2024 –)

▶ Fermat’s last theorem led by Buzzard (Oct 2024 –)

32 / 80

Lean’s mathematical library

Large formalisation projects are enabled by Lean’s mathematical library
mathlib, which is completely monolithic and emphasises generality.

Currently, mathlib is a graduate student in algebra, and knows:

▶ linear algebra: matrices, projective modules, Clifford algebras, Hopf
algebras, Lie algebras, ordinary representation theory

▶ field theory: finite fields, function fields, finite Galois theory, absolute
Galois groups, central division algebras, Ax–Grothendieck theorem

▶ group theory: symmetric groups, structure theorems, Sylow
theorems, nilpotent groups, primitive groups, finitely generated
groups, free groups, Coxeter groups, abelian group cohomology

▶ ring theory: domains, localisation, primary decomposition, integral
closure, chain conditions, graded modules, Henselian rings, modules
of differentials, basic dimension theory, basic homological algebra

▶ algebraic geometry: schemes, morphism properties, valuative criteria,
coherent sheaves, sheaf cohomology, Grothendieck topologies

33 / 80

Lean’s mathematical library

Large formalisation projects are enabled by Lean’s mathematical library
mathlib, which is completely monolithic and emphasises generality.

Currently, mathlib is a graduate student in algebra, and knows:

▶ linear algebra: matrices, projective modules, Clifford algebras, Hopf
algebras, Lie algebras, ordinary representation theory

▶ field theory: finite fields, function fields, finite Galois theory, absolute
Galois groups, central division algebras, Ax–Grothendieck theorem

▶ group theory: symmetric groups, structure theorems, Sylow
theorems, nilpotent groups, primitive groups, finitely generated
groups, free groups, Coxeter groups, abelian group cohomology

▶ ring theory: domains, localisation, primary decomposition, integral
closure, chain conditions, graded modules, Henselian rings, modules
of differentials, basic dimension theory, basic homological algebra

▶ algebraic geometry: schemes, morphism properties, valuative criteria,
coherent sheaves, sheaf cohomology, Grothendieck topologies

34 / 80

Lean’s mathematical library

Large formalisation projects are enabled by Lean’s mathematical library
mathlib, which is completely monolithic and emphasises generality.

Currently, mathlib is a graduate student in algebra, and knows:

▶ linear algebra: matrices, projective modules, Clifford algebras, Hopf
algebras, Lie algebras, ordinary representation theory

▶ field theory: finite fields, function fields, finite Galois theory, absolute
Galois groups, central division algebras, Ax–Grothendieck theorem

▶ group theory: symmetric groups, structure theorems, Sylow
theorems, nilpotent groups, primitive groups, finitely generated
groups, free groups, Coxeter groups, abelian group cohomology

▶ ring theory: domains, localisation, primary decomposition, integral
closure, chain conditions, graded modules, Henselian rings, modules
of differentials, basic dimension theory, basic homological algebra

▶ algebraic geometry: schemes, morphism properties, valuative criteria,
coherent sheaves, sheaf cohomology, Grothendieck topologies

35 / 80

Lean’s mathematical library

Large formalisation projects are enabled by Lean’s mathematical library
mathlib, which is completely monolithic and emphasises generality.

Currently, mathlib is a graduate student in algebra, and knows:

▶ linear algebra: matrices, projective modules, Clifford algebras, Hopf
algebras, Lie algebras, ordinary representation theory

▶ field theory: finite fields, function fields, finite Galois theory, absolute
Galois groups, central division algebras, Ax–Grothendieck theorem

▶ group theory: symmetric groups, structure theorems, Sylow
theorems, nilpotent groups, primitive groups, finitely generated
groups, free groups, Coxeter groups, abelian group cohomology

▶ ring theory: domains, localisation, primary decomposition, integral
closure, chain conditions, graded modules, Henselian rings, modules
of differentials, basic dimension theory, basic homological algebra

▶ algebraic geometry: schemes, morphism properties, valuative criteria,
coherent sheaves, sheaf cohomology, Grothendieck topologies

36 / 80

Lean’s mathematical library

Large formalisation projects are enabled by Lean’s mathematical library
mathlib, which is completely monolithic and emphasises generality.

Currently, mathlib is a graduate student in algebra, and knows:

▶ linear algebra: matrices, projective modules, Clifford algebras, Hopf
algebras, Lie algebras, ordinary representation theory

▶ field theory: finite fields, function fields, finite Galois theory, absolute
Galois groups, central division algebras, Ax–Grothendieck theorem

▶ group theory: symmetric groups, structure theorems, Sylow
theorems, nilpotent groups, primitive groups, finitely generated
groups, free groups, Coxeter groups, abelian group cohomology

▶ ring theory: domains, localisation, primary decomposition, integral
closure, chain conditions, graded modules, Henselian rings, modules
of differentials, basic dimension theory, basic homological algebra

▶ algebraic geometry: schemes, morphism properties, valuative criteria,
coherent sheaves, sheaf cohomology, Grothendieck topologies

37 / 80

Lean’s mathematical library

Large formalisation projects are enabled by Lean’s mathematical library
mathlib, which is completely monolithic and emphasises generality.

Currently, mathlib is a graduate student in algebra, and knows:

▶ linear algebra: matrices, projective modules, Clifford algebras, Hopf
algebras, Lie algebras, ordinary representation theory

▶ field theory: finite fields, function fields, finite Galois theory, absolute
Galois groups, central division algebras, Ax–Grothendieck theorem

▶ group theory: symmetric groups, structure theorems, Sylow
theorems, nilpotent groups, primitive groups, finitely generated
groups, free groups, Coxeter groups, abelian group cohomology

▶ ring theory: domains, localisation, primary decomposition, integral
closure, chain conditions, graded modules, Henselian rings, modules
of differentials, basic dimension theory, basic homological algebra

▶ algebraic geometry: schemes, morphism properties, valuative criteria,
coherent sheaves, sheaf cohomology, Grothendieck topologies

38 / 80

Algebraic number theory in Lean

In particular, mathlib also knows some non-trivial results in number
theory, which is fundamentally applied pure mathematics, including:

▶ elementary theory: Lagrange’s theorem on sums of four squares,
Legendre’s theorem on rational approximation, Gauss’s law of
quadratic reciprocity, Bertrand’s postulate

▶ analytic theory: Dirichlet’s theorem on primes in arithmetic
progressions, Liouville’s theorem on transcendental numbers,
boundedness of Eisenstein series, functional equation of Hurwitz
ζ-functions, Gallagher’s ergodic theorem, the Selberg sieve

▶ local theory: Hensel’s lemma for Qp, ramification–inertia formula,
basic properties of adèle rings, basic properties of Witt vectors

▶ global theory: Ostrowski’s theorem for Q, product formula,
finiteness of class numbers, Dirichlet’s unit theorem, Galois group of
cyclotomic extensions, Kummer–Dedekind theorem

▶ Diophantine functions and Matiyasevic’s theorem

▶ Fermat’s last theorem for n = 3, 4 and for polynomials

It will be learning about class field theory in July!

39 / 80

Algebraic number theory in Lean

In particular, mathlib also knows some non-trivial results in number
theory, which is fundamentally applied pure mathematics, including:

▶ elementary theory: Lagrange’s theorem on sums of four squares,
Legendre’s theorem on rational approximation, Gauss’s law of
quadratic reciprocity, Bertrand’s postulate

▶ analytic theory: Dirichlet’s theorem on primes in arithmetic
progressions, Liouville’s theorem on transcendental numbers,
boundedness of Eisenstein series, functional equation of Hurwitz
ζ-functions, Gallagher’s ergodic theorem, the Selberg sieve

▶ local theory: Hensel’s lemma for Qp, ramification–inertia formula,
basic properties of adèle rings, basic properties of Witt vectors

▶ global theory: Ostrowski’s theorem for Q, product formula,
finiteness of class numbers, Dirichlet’s unit theorem, Galois group of
cyclotomic extensions, Kummer–Dedekind theorem

▶ Diophantine functions and Matiyasevic’s theorem

▶ Fermat’s last theorem for n = 3, 4 and for polynomials

It will be learning about class field theory in July!

40 / 80

Algebraic number theory in Lean

In particular, mathlib also knows some non-trivial results in number
theory, which is fundamentally applied pure mathematics, including:

▶ elementary theory: Lagrange’s theorem on sums of four squares,
Legendre’s theorem on rational approximation, Gauss’s law of
quadratic reciprocity, Bertrand’s postulate

▶ analytic theory: Dirichlet’s theorem on primes in arithmetic
progressions, Liouville’s theorem on transcendental numbers,
boundedness of Eisenstein series, functional equation of Hurwitz
ζ-functions, Gallagher’s ergodic theorem, the Selberg sieve

▶ local theory: Hensel’s lemma for Qp, ramification–inertia formula,
basic properties of adèle rings, basic properties of Witt vectors

▶ global theory: Ostrowski’s theorem for Q, product formula,
finiteness of class numbers, Dirichlet’s unit theorem, Galois group of
cyclotomic extensions, Kummer–Dedekind theorem

▶ Diophantine functions and Matiyasevic’s theorem

▶ Fermat’s last theorem for n = 3, 4 and for polynomials

It will be learning about class field theory in July!

41 / 80

Algebraic number theory in Lean

In particular, mathlib also knows some non-trivial results in number
theory, which is fundamentally applied pure mathematics, including:

▶ elementary theory: Lagrange’s theorem on sums of four squares,
Legendre’s theorem on rational approximation, Gauss’s law of
quadratic reciprocity, Bertrand’s postulate

▶ analytic theory: Dirichlet’s theorem on primes in arithmetic
progressions, Liouville’s theorem on transcendental numbers,
boundedness of Eisenstein series, functional equation of Hurwitz
ζ-functions, Gallagher’s ergodic theorem, the Selberg sieve

▶ local theory: Hensel’s lemma for Qp, ramification–inertia formula,
basic properties of adèle rings, basic properties of Witt vectors

▶ global theory: Ostrowski’s theorem for Q, product formula,
finiteness of class numbers, Dirichlet’s unit theorem, Galois group of
cyclotomic extensions, Kummer–Dedekind theorem

▶ Diophantine functions and Matiyasevic’s theorem

▶ Fermat’s last theorem for n = 3, 4 and for polynomials

It will be learning about class field theory in July!

42 / 80

Algebraic number theory in Lean

In particular, mathlib also knows some non-trivial results in number
theory, which is fundamentally applied pure mathematics, including:

▶ elementary theory: Lagrange’s theorem on sums of four squares,
Legendre’s theorem on rational approximation, Gauss’s law of
quadratic reciprocity, Bertrand’s postulate

▶ analytic theory: Dirichlet’s theorem on primes in arithmetic
progressions, Liouville’s theorem on transcendental numbers,
boundedness of Eisenstein series, functional equation of Hurwitz
ζ-functions, Gallagher’s ergodic theorem, the Selberg sieve

▶ local theory: Hensel’s lemma for Qp, ramification–inertia formula,
basic properties of adèle rings, basic properties of Witt vectors

▶ global theory: Ostrowski’s theorem for Q, product formula,
finiteness of class numbers, Dirichlet’s unit theorem, Galois group of
cyclotomic extensions, Kummer–Dedekind theorem

▶ Diophantine functions and Matiyasevic’s theorem

▶ Fermat’s last theorem for n = 3, 4 and for polynomials

It will be learning about class field theory in July!

43 / 80

Algebraic number theory in Lean

In particular, mathlib also knows some non-trivial results in number
theory, which is fundamentally applied pure mathematics, including:

▶ elementary theory: Lagrange’s theorem on sums of four squares,
Legendre’s theorem on rational approximation, Gauss’s law of
quadratic reciprocity, Bertrand’s postulate

▶ analytic theory: Dirichlet’s theorem on primes in arithmetic
progressions, Liouville’s theorem on transcendental numbers,
boundedness of Eisenstein series, functional equation of Hurwitz
ζ-functions, Gallagher’s ergodic theorem, the Selberg sieve

▶ local theory: Hensel’s lemma for Qp, ramification–inertia formula,
basic properties of adèle rings, basic properties of Witt vectors

▶ global theory: Ostrowski’s theorem for Q, product formula,
finiteness of class numbers, Dirichlet’s unit theorem, Galois group of
cyclotomic extensions, Kummer–Dedekind theorem

▶ Diophantine functions and Matiyasevic’s theorem

▶ Fermat’s last theorem for n = 3, 4 and for polynomials

It will be learning about class field theory in July!

44 / 80

Elliptic curves in Lean

Since 2021, I have been formalising an algebraic theory of elliptic curves.

However, mathlib does not know what a curve is! This is actually fine,
because the Riemann–Roch theorem gives an equivalence of categories

{elliptic curves over F} ∼=
{

tuples (a1, a2, a3, a4, a6) ∈ F 5

such that ∆(ai) ̸= 0

}
,

for any field F . Currently mathlib thinks that

▶ an elliptic curve E over a ring R is the data of a tuple
(a1, a2, a3, a4, a6) ∈ R5 and a proof that ∆(ai) ∈ R×, and

▶ a point on E is either O or a tuple (x , y) ∈ R2 such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x2x

2 + a4x + a6.

The algebra can be developed independently of the geometry!

How far can we develop the arithmetic purely algebraically?

45 / 80

Elliptic curves in Lean

Since 2021, I have been formalising an algebraic theory of elliptic curves.

However, mathlib does not know what a curve is! This is actually fine,
because the Riemann–Roch theorem gives an equivalence of categories

{elliptic curves over F} ∼=
{

tuples (a1, a2, a3, a4, a6) ∈ F 5

such that ∆(ai) ̸= 0

}
,

for any field F .

Currently mathlib thinks that

▶ an elliptic curve E over a ring R is the data of a tuple
(a1, a2, a3, a4, a6) ∈ R5 and a proof that ∆(ai) ∈ R×, and

▶ a point on E is either O or a tuple (x , y) ∈ R2 such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x2x

2 + a4x + a6.

The algebra can be developed independently of the geometry!

How far can we develop the arithmetic purely algebraically?

46 / 80

Elliptic curves in Lean

Since 2021, I have been formalising an algebraic theory of elliptic curves.

However, mathlib does not know what a curve is! This is actually fine,
because the Riemann–Roch theorem gives an equivalence of categories

{elliptic curves over F} ∼=
{

tuples (a1, a2, a3, a4, a6) ∈ F 5

such that ∆(ai) ̸= 0

}
,

for any field F . Currently mathlib thinks that

▶ an elliptic curve E over a ring R is the data of a tuple
(a1, a2, a3, a4, a6) ∈ R5 and a proof that ∆(ai) ∈ R×, and

▶ a point on E is either O or a tuple (x , y) ∈ R2 such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x2x

2 + a4x + a6.

The algebra can be developed independently of the geometry!

How far can we develop the arithmetic purely algebraically?

47 / 80

Elliptic curves in Lean

Since 2021, I have been formalising an algebraic theory of elliptic curves.

However, mathlib does not know what a curve is! This is actually fine,
because the Riemann–Roch theorem gives an equivalence of categories

{elliptic curves over F} ∼=
{

tuples (a1, a2, a3, a4, a6) ∈ F 5

such that ∆(ai) ̸= 0

}
,

for any field F . Currently mathlib thinks that

▶ an elliptic curve E over a ring R is the data of a tuple
(a1, a2, a3, a4, a6) ∈ R5 and a proof that ∆(ai) ∈ R×, and

▶ a point on E is either O or a tuple (x , y) ∈ R2 such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x2x

2 + a4x + a6.

The algebra can be developed independently of the geometry!

How far can we develop the arithmetic purely algebraically?

48 / 80

The group law in Lean

By construction, this means that the geometric addition law is given by
explicit rational functions, and associativity is known to be very difficult.

Generically, an equality of the X -coordinates of (P + Q) + R and
P +(Q +R) is an equality of multivariate polynomials with 26,082 terms!

Classically, Riemann–Roch gives an explicit bijection from E (F) to the
degree-zero divisor class group Pic0F (E) that preserves the addition law.
While mathlib does not know about divisors, it does know that integral
domains D have ideal class groups Cl(D), which translates to a map

E (F) −→ Cl(F [E])
O 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

In 2022, Junyan Xu discovered an elementary but novel proof that this
map is injective, due to limitations in mathlib. I formalised his argument
in Lean and we wrote a paper that was published in ITP 2023.

49 / 80

The group law in Lean

By construction, this means that the geometric addition law is given by
explicit rational functions, and associativity is known to be very difficult.
Generically, an equality of the X -coordinates of (P + Q) + R and
P +(Q +R) is an equality of multivariate polynomials with 26,082 terms!

Classically, Riemann–Roch gives an explicit bijection from E (F) to the
degree-zero divisor class group Pic0F (E) that preserves the addition law.
While mathlib does not know about divisors, it does know that integral
domains D have ideal class groups Cl(D), which translates to a map

E (F) −→ Cl(F [E])
O 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

In 2022, Junyan Xu discovered an elementary but novel proof that this
map is injective, due to limitations in mathlib. I formalised his argument
in Lean and we wrote a paper that was published in ITP 2023.

50 / 80

The group law in Lean

By construction, this means that the geometric addition law is given by
explicit rational functions, and associativity is known to be very difficult.
Generically, an equality of the X -coordinates of (P + Q) + R and
P +(Q +R) is an equality of multivariate polynomials with 26,082 terms!

Classically, Riemann–Roch gives an explicit bijection from E (F) to the
degree-zero divisor class group Pic0F (E) that preserves the addition law.

While mathlib does not know about divisors, it does know that integral
domains D have ideal class groups Cl(D), which translates to a map

E (F) −→ Cl(F [E])
O 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

In 2022, Junyan Xu discovered an elementary but novel proof that this
map is injective, due to limitations in mathlib. I formalised his argument
in Lean and we wrote a paper that was published in ITP 2023.

51 / 80

The group law in Lean

By construction, this means that the geometric addition law is given by
explicit rational functions, and associativity is known to be very difficult.
Generically, an equality of the X -coordinates of (P + Q) + R and
P +(Q +R) is an equality of multivariate polynomials with 26,082 terms!

Classically, Riemann–Roch gives an explicit bijection from E (F) to the
degree-zero divisor class group Pic0F (E) that preserves the addition law.
While mathlib does not know about divisors, it does know that integral
domains D have ideal class groups Cl(D), which translates to a map

E (F) −→ Cl(F [E])
O 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

In 2022, Junyan Xu discovered an elementary but novel proof that this
map is injective, due to limitations in mathlib. I formalised his argument
in Lean and we wrote a paper that was published in ITP 2023.

52 / 80

The group law in Lean

By construction, this means that the geometric addition law is given by
explicit rational functions, and associativity is known to be very difficult.
Generically, an equality of the X -coordinates of (P + Q) + R and
P +(Q +R) is an equality of multivariate polynomials with 26,082 terms!

Classically, Riemann–Roch gives an explicit bijection from E (F) to the
degree-zero divisor class group Pic0F (E) that preserves the addition law.
While mathlib does not know about divisors, it does know that integral
domains D have ideal class groups Cl(D), which translates to a map

E (F) −→ Cl(F [E])
O 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

In 2022, Junyan Xu discovered an elementary but novel proof that this
map is injective, due to limitations in mathlib. I formalised his argument
in Lean and we wrote a paper that was published in ITP 2023.

53 / 80

The n-torsion subgroup in Lean

The fundamental theorem in the arithmetic of elliptic curves is the fact
that EF [n] is a rank two module over (Z/n)[GF] whenever char(F) ∤ n.

Thus the ℓ-adic Tate module TℓEF := lim←−n
EF [ℓ

n] is a two-dimensional
ℓ-adic Galois representation, which is crucial in Tate’s isogeny theorem,
Serre’s open image theorem, Wiles’s modularity lifting theorem, etc.

The Arithmetic of Elliptic Curves by Silverman attempts to prove this in
Exercise 3.7 in seven parts, providing explicit inductive definitions of
certain division polynomials ψn, ϕn, ωn ∈ F [X ,Y] in terms of ai ∈ F .

Exercise 3.7(d) claims that for any point (x , y) ∈ E (F),

[n]((x , y)) =

(
ϕn(x , y)

ψn(x , y)2
,
ωn(x , y)

ψn(x , y)3

)
.

The key idea is that ψn(x , y) = 0 occurs precisely when [n]((x , y)) = O.

54 / 80

The n-torsion subgroup in Lean

The fundamental theorem in the arithmetic of elliptic curves is the fact
that EF [n] is a rank two module over (Z/n)[GF] whenever char(F) ∤ n.

Thus the ℓ-adic Tate module TℓEF := lim←−n
EF [ℓ

n] is a two-dimensional
ℓ-adic Galois representation, which is crucial in Tate’s isogeny theorem,
Serre’s open image theorem, Wiles’s modularity lifting theorem, etc.

The Arithmetic of Elliptic Curves by Silverman attempts to prove this in
Exercise 3.7 in seven parts, providing explicit inductive definitions of
certain division polynomials ψn, ϕn, ωn ∈ F [X ,Y] in terms of ai ∈ F .

Exercise 3.7(d) claims that for any point (x , y) ∈ E (F),

[n]((x , y)) =

(
ϕn(x , y)

ψn(x , y)2
,
ωn(x , y)

ψn(x , y)3

)
.

The key idea is that ψn(x , y) = 0 occurs precisely when [n]((x , y)) = O.

55 / 80

The n-torsion subgroup in Lean

The fundamental theorem in the arithmetic of elliptic curves is the fact
that EF [n] is a rank two module over (Z/n)[GF] whenever char(F) ∤ n.

Thus the ℓ-adic Tate module TℓEF := lim←−n
EF [ℓ

n] is a two-dimensional
ℓ-adic Galois representation, which is crucial in Tate’s isogeny theorem,
Serre’s open image theorem, Wiles’s modularity lifting theorem, etc.

The Arithmetic of Elliptic Curves by Silverman attempts to prove this in
Exercise 3.7 in seven parts, providing explicit inductive definitions of
certain division polynomials ψn, ϕn, ωn ∈ F [X ,Y] in terms of ai ∈ F .

Exercise 3.7(d) claims that for any point (x , y) ∈ E (F),

[n]((x , y)) =

(
ϕn(x , y)

ψn(x , y)2
,
ωn(x , y)

ψn(x , y)3

)
.

The key idea is that ψn(x , y) = 0 occurs precisely when [n]((x , y)) = O.

56 / 80

The n-torsion subgroup in Lean

The fundamental theorem in the arithmetic of elliptic curves is the fact
that EF [n] is a rank two module over (Z/n)[GF] whenever char(F) ∤ n.

Thus the ℓ-adic Tate module TℓEF := lim←−n
EF [ℓ

n] is a two-dimensional
ℓ-adic Galois representation, which is crucial in Tate’s isogeny theorem,
Serre’s open image theorem, Wiles’s modularity lifting theorem, etc.

The Arithmetic of Elliptic Curves by Silverman attempts to prove this in
Exercise 3.7 in seven parts, providing explicit inductive definitions of
certain division polynomials ψn, ϕn, ωn ∈ F [X ,Y] in terms of ai ∈ F .

Exercise 3.7(d) claims that for any point (x , y) ∈ E (F),

[n]((x , y)) =

(
ϕn(x , y)

ψn(x , y)2
,
ωn(x , y)

ψn(x , y)3

)
.

The key idea is that ψn(x , y) = 0 occurs precisely when [n]((x , y)) = O.

57 / 80

The multiplication-by-n formula in Lean

Conjecture
No one has done Exercise 3.7 purely algebraically.

Proof.
▶ Exercise 3.7(c) that (ϕn, ψ

2
n) = 1 needs Exercise 3.7(d).

▶ Definition of ωn is incorrect! It should instead be

ωn := 1
2

(
ψ2n/ψn − a1ϕnψn − a3ψ

3
n

)
.

▶ Integrality of ωn needs Exercise 3.7(g) that ψn is an elliptic sequence

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

▶ Exercise 3.7(g) needs the stronger result that ψn is an elliptic net

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

▶ Exercise 3.7(d) needs four special cases of this stronger result. □

58 / 80

The multiplication-by-n formula in Lean

Conjecture
No one has done Exercise 3.7 purely algebraically.

Proof.
▶ Exercise 3.7(c) that (ϕn, ψ

2
n) = 1 needs Exercise 3.7(d).

▶ Definition of ωn is incorrect! It should instead be

ωn := 1
2

(
ψ2n/ψn − a1ϕnψn − a3ψ

3
n

)
.

▶ Integrality of ωn needs Exercise 3.7(g) that ψn is an elliptic sequence

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

▶ Exercise 3.7(g) needs the stronger result that ψn is an elliptic net

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

▶ Exercise 3.7(d) needs four special cases of this stronger result. □

59 / 80

The multiplication-by-n formula in Lean

Conjecture
No one has done Exercise 3.7 purely algebraically.

Proof.
▶ Exercise 3.7(c) that (ϕn, ψ

2
n) = 1 needs Exercise 3.7(d).

▶ Definition of ωn is incorrect! It should instead be

ωn := 1
2

(
ψ2n/ψn − a1ϕnψn − a3ψ

3
n

)
.

▶ Integrality of ωn needs Exercise 3.7(g) that ψn is an elliptic sequence

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

▶ Exercise 3.7(g) needs the stronger result that ψn is an elliptic net

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

▶ Exercise 3.7(d) needs four special cases of this stronger result. □

60 / 80

The multiplication-by-n formula in Lean

Conjecture
No one has done Exercise 3.7 purely algebraically.

Proof.
▶ Exercise 3.7(c) that (ϕn, ψ

2
n) = 1 needs Exercise 3.7(d).

▶ Definition of ωn is incorrect! It should instead be

ωn := 1
2

(
ψ2n/ψn − a1ϕnψn − a3ψ

3
n

)
.

▶ Integrality of ωn needs Exercise 3.7(g) that ψn is an elliptic sequence

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

▶ Exercise 3.7(g) needs the stronger result that ψn is an elliptic net

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

▶ Exercise 3.7(d) needs four special cases of this stronger result. □

61 / 80

The multiplication-by-n formula in Lean

Conjecture
No one has done Exercise 3.7 purely algebraically.

Proof.
▶ Exercise 3.7(c) that (ϕn, ψ

2
n) = 1 needs Exercise 3.7(d).

▶ Definition of ωn is incorrect! It should instead be

ωn := 1
2

(
ψ2n/ψn − a1ϕnψn − a3ψ

3
n

)
.

▶ Integrality of ωn needs Exercise 3.7(g) that ψn is an elliptic sequence

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

▶ Exercise 3.7(g) needs the stronger result that ψn is an elliptic net

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

▶ Exercise 3.7(d) needs four special cases of this stronger result. □

62 / 80

The multiplication-by-n formula in Lean

Conjecture
No one has done Exercise 3.7 purely algebraically.

Proof.
▶ Exercise 3.7(c) that (ϕn, ψ

2
n) = 1 needs Exercise 3.7(d).

▶ Definition of ωn is incorrect! It should instead be

ωn := 1
2

(
ψ2n/ψn − a1ϕnψn − a3ψ

3
n

)
.

▶ Integrality of ωn needs Exercise 3.7(g) that ψn is an elliptic sequence

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

▶ Exercise 3.7(g) needs the stronger result that ψn is an elliptic net

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

▶ Exercise 3.7(d) needs four special cases of this stronger result. □

63 / 80

The ℓ-adic Tate module in Lean

Peiran Wu (), Junyan Xu (), and I () formalised TℓEF
∼= Z2

ℓ in Lean.

Def of ψn (3.7(a))

Def of ϕn (3.7(a))

deg(ϕ2
n) = n2 (3.7(b))

Projective coordinates

Elliptic nets (3.7(g))Def of ωn (3.7(a))

[n]((x, y)) (3.7(d))

(ϕ2
n, ψn) = 1 (3.7(c))

#EF [n] = n2 (3.7(e))

Finite abelian groupsEF [n]
∼= (Z/n)2

Inverse limitsTℓEF
∼= Z2

ℓ

Assumption ∆(ai) ̸= 0

64 / 80

The ℓ-adic Tate module in Lean

Peiran Wu (), Junyan Xu (), and I () formalised TℓEF
∼= Z2

ℓ in Lean.

Def of ψn (3.7(a))

Def of ϕn (3.7(a))

deg(ϕ2
n) = n2 (3.7(b))

Projective coordinates

Elliptic nets (3.7(g))Def of ωn (3.7(a))

[n]((x, y)) (3.7(d))

(ϕ2
n, ψn) = 1 (3.7(c))

#EF [n] = n2 (3.7(e))

Finite abelian groupsEF [n]
∼= (Z/n)2

Inverse limitsTℓEF
∼= Z2

ℓ

Assumption ∆(ai) ̸= 0

65 / 80

The ℓ-adic Tate module in Lean

Peiran Wu (), Junyan Xu (), and I () formalised TℓEF
∼= Z2

ℓ in Lean.

Def of ψn (3.7(a))

Def of ϕn (3.7(a))

deg(ϕ2
n) = n2 (3.7(b))

Projective coordinates

Elliptic nets (3.7(g))Def of ωn (3.7(a))

[n]((x, y)) (3.7(d))

(ϕ2
n, ψn) = 1 (3.7(c))

#EF [n] = n2 (3.7(e))

Finite abelian groupsEF [n]
∼= (Z/n)2

Inverse limitsTℓEF
∼= Z2

ℓ

Assumption ∆(ai) ̸= 0

66 / 80

The ℓ-adic Tate module in Lean

Peiran Wu (), Junyan Xu (), and I () formalised TℓEF
∼= Z2

ℓ in Lean.

Def of ψn (3.7(a))

Def of ϕn (3.7(a))

deg(ϕ2
n) = n2 (3.7(b))

Projective coordinates

Elliptic nets (3.7(g))Def of ωn (3.7(a))

[n]((x, y)) (3.7(d))

(ϕ2
n, ψn) = 1 (3.7(c))

#EF [n] = n2 (3.7(e))

Finite abelian groupsEF [n]
∼= (Z/n)2

Inverse limitsTℓEF
∼= Z2

ℓ

Assumption ∆(ai) ̸= 0

67 / 80

The ℓ-adic Tate module in Lean

Peiran Wu (), Junyan Xu (), and I () formalised TℓEF
∼= Z2

ℓ in Lean.

Def of ψn (3.7(a))

Def of ϕn (3.7(a))

deg(ϕ2
n) = n2 (3.7(b))

Projective coordinates

Elliptic nets (3.7(g))Def of ωn (3.7(a))

[n]((x, y)) (3.7(d))

(ϕ2
n, ψn) = 1 (3.7(c))

#EF [n] = n2 (3.7(e))

Finite abelian groupsEF [n]
∼= (Z/n)2

Inverse limitsTℓEF
∼= Z2

ℓ

Assumption ∆(ai) ̸= 0

68 / 80

The ℓ-adic Tate module in Lean

Peiran Wu (), Junyan Xu (), and I () formalised TℓEF
∼= Z2

ℓ in Lean.

Def of ψn (3.7(a))

Def of ϕn (3.7(a))

deg(ϕ2
n) = n2 (3.7(b))

Projective coordinates

Elliptic nets (3.7(g))Def of ωn (3.7(a))

[n]((x, y)) (3.7(d))

(ϕ2
n, ψn) = 1 (3.7(c))

#EF [n] = n2 (3.7(e))

Finite abelian groupsEF [n]
∼= (Z/n)2

Inverse limitsTℓEF
∼= Z2

ℓ

Assumption ∆(ai) ̸= 0

Note that the assumption ∆(ai) ̸= 0 is unnecessary until Exercise 3.7(c).

69 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

70 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

71 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

72 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

73 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

74 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

75 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

76 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

77 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

78 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

79 / 80

Future projects

Can we formalise the full statement of the Birch and Swinnerton-Dyer
conjecture for an elliptic curve E over a number field K in Lean?

E(Fq) Ê(M)

E(Kp) → Ẽ(κp)

L(E , s)

H1(GK , E)

Seln(E)

#E(K)/n < ∞

hK (P)

ĥE (P)

E(K) ∼= T ⊕ Zr

ords=1 L(E , s) = r

cp(E) Reg(E) X(E)

lim
s→1

L(E , s)

(s − 1)r
=

Ω(E) · Reg(E) · X(E) ·
∏

p cp(E)√
∆(K) · #T 2

E(R) E(C)

∫
E
ωE

Ω(E)

Come join the Lean community to enter a new era of mathematics!

80 / 80

