Twisted elliptic L-values

David Ang

.....

Dirichlet twists

ixedi values

Explanations

Twisted elliptic L-values

David Kurniadi Angdinata

London School of Geometry and Number Theory

Early Number Theory Researchers Workshop 2023

Friday, 25 August 2023

Twisted elliptic L-values

David Ang

Introduction

Dirichlet twicte

Real values

Modular symbols

Explanations

A tale of two ranks

Let E be an elliptic curve over \mathbb{Q} , and let K be a number field.

Introduction

British and the

Real valu

Modular symbol

A tale of two ranks

Let E be an elliptic curve over \mathbb{Q} , and let K be a number field.

Theorem (Mordell-Weil)

The set of K-points E(K) is a finitely generated abelian group.

In particular, $E(K) \cong \operatorname{tor}_{E/K} \times \mathbb{Z}^{\operatorname{rk}_{E/K}}$, where

- $tor_{E/K}$ is the torsion subgroup, and
- $\operatorname{rk}_{E/K}$ is the (algebraic) rank.

While $tor_{E/K}$ is classified, $rk_{E/K}$ remains mysterious.

Introduction

Berlin

Real valu

Modular symbol

A tale of two ranks

Let E be an elliptic curve over \mathbb{Q} , and let K be a number field.

Theorem (Mordell-Weil)

The set of K-points E(K) is a finitely generated abelian group. In particular, $E(K) \cong \operatorname{tor}_{E/K} \times \mathbb{Z}^{\operatorname{rk}_{E/K}}$, where

- $tor_{E/K}$ is the torsion subgroup, and
- $\operatorname{rk}_{E/K}$ is the (algebraic) rank.

While $tor_{E/K}$ is classified, $rk_{E/K}$ remains mysterious.

Conjecture (Birch-Swinnerton-Dyer, weak form)

The order of vanishing of $L_{E/K}(s)$ at s=1 is equal to $\mathrm{rk}_{E/K}$. This is called the *analytic rank*.

Evolunations

L-functions

For any G_K -representation ρ , its **local Euler factor** is given by

$$L_{\mathfrak{p}}(\rho, T) := \det(1 - T \cdot \phi_{\mathfrak{p}} \mid \rho^{I_{\mathfrak{p}}}),$$

where $\phi_{\mathfrak{p}} \in \mathcal{G}_{\mathcal{K}}$ is a Frobenius and $\mathit{I}_{\mathfrak{p}} \leq \mathcal{G}_{\mathcal{K}}$ is the inertia subgroup.

L-functions

For any G_K -representation ρ , its **local Euler factor** is given by

$$L_{\mathfrak{p}}(\rho, T) := \det(1 - T \cdot \phi_{\mathfrak{p}} \mid \rho^{I_{\mathfrak{p}}}),$$

where $\phi_{\mathfrak{p}} \in G_{\mathcal{K}}$ is a Frobenius and $I_{\mathfrak{p}} \leq G_{\mathcal{K}}$ is the inertia subgroup.

The (Hasse-Weil) L-function of E/K is given by

$$L_{E/K}(s) := \prod_{\mathfrak{p}} \frac{1}{L_{\mathfrak{p}}(\rho_{E,\ell}, \operatorname{Nm}(\mathfrak{p})^{-s})},$$

where $\rho_{E,\ell}$ is the rational ℓ -adic Tate module as a G_K -representation.

Introduction

.....

Pool volu

Modular symbol

L-functions

For any G_K -representation ρ , its **local Euler factor** is given by

$$L_{\mathfrak{p}}(\rho, T) := \det(1 - T \cdot \phi_{\mathfrak{p}} \mid \rho^{I_{\mathfrak{p}}}),$$

where $\phi_{\mathfrak{p}} \in G_{\mathcal{K}}$ is a Frobenius and $I_{\mathfrak{p}} \leq G_{\mathcal{K}}$ is the inertia subgroup.

The (Hasse-Weil) L-function of E/K is given by

$$L_{E/K}(s) := \prod_{\mathfrak{p}} \frac{1}{L_{\mathfrak{p}}(\rho_{E,\ell}, \operatorname{Nm}(\mathfrak{p})^{-s})},$$

where $ho_{{\sf E},\ell}$ is the rational ℓ -adic Tate module as a ${\sf G}_{{\sf K}}$ -representation.

Example $(K = \mathbb{Q})$

Let $a_p:=1+p-\#E(\mathbb{F}_p)$. Then

$$L_p(\rho_{E,\ell},p^{-s}) = \begin{cases} 1 - a_p p^{-s} + p^{1-2s} & p \nmid \Delta(E) \\ 1 - a_p p^{-s} & p \mid \Delta(E) \end{cases}.$$

Modular symbo

Explanations

The BSD conjecture

Conjecture (Birch-Swinnerton-Dyer, strong form)

The leading term of $L_{E/K}(s)$ at s=1 satisfies

$$\lim_{s\to 1} \frac{L_{E/K}(s)}{(s-1)^{\mathrm{rk}_{E/K}}} \cdot \frac{\sqrt{|\Delta_K|}}{\Omega_{E/K}} = \frac{C_{E/K} \cdot R_{E/K} \cdot \#\mathrm{III}_{E/K}}{\#\mathrm{tor}_{E/K}^2}.$$

The BSD conjecture

Conjecture (Birch-Swinnerton-Dyer, strong form)

The leading term of $L_{E/K}(s)$ at s = 1 satisfies

$$\lim_{s\to 1} \frac{L_{E/K}(s)}{(s-1)^{\mathrm{rk}_{E/K}}} \cdot \frac{\sqrt{|\Delta_K|}}{\Omega_{E/K}} = \frac{C_{E/K} \cdot R_{E/K} \cdot \# \mathrm{III}_{E/K}}{\# \mathrm{tor}_{E/K}^2}.$$

Here,

- $\Omega_{E/K}$ is the global period,
- C_{E/K} is the Tamagawa product,
- $R_{E/K}$ is the *regulator*, where $R_{E/K}=1$ if ${\rm rk}_{E/K}=0$, and
- $\coprod_{E/K}$ is the *Tate-Shafarevich group*, conjecturally finite.

Introduction

Berthall Co.

Real valu

Modular symbol

Explanations

The BSD conjecture

Conjecture (Birch-Swinnerton-Dyer, strong form)

The leading term of $L_{E/K}(s)$ at s=1 satisfies

$$\lim_{s\to 1} \frac{L_{E/K}(s)}{(s-1)^{\mathrm{rk}_{E/K}}} \cdot \frac{\sqrt{|\Delta_K|}}{\Omega_{E/K}} = \frac{C_{E/K} \cdot R_{E/K} \cdot \# \mathrm{III}_{E/K}}{\# \mathrm{tor}_{E/K}^2}.$$

Here,

- $\Omega_{E/K}$ is the global period,
- C_{E/K} is the Tamagawa product,
- $R_{E/K}$ is the *regulator*, where $R_{E/K}=1$ if ${
 m rk}_{E/K}=0$, and
- $\bullet \ \coprod_{E/K}$ is the Tate-Shafarevich group, conjecturally finite.

If $\mathrm{rk}_{E/K}=0$, the LHS is called the **algebraic L-value**, given by

$$\mathcal{L}_{E/K} := \mathcal{L}_{E/K}(1) \cdot rac{\sqrt{\Delta_K}}{\Omega_{E/K}}.$$

Twisted elliptic L-values

David Ang

and disease.

Dirichlet twists

Real values

Modular symbo

Explanations

Twisted L-functions

Let $K = \mathbb{Q}(\zeta_m)$, and let $\chi : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

rteal val

Modular symb

Explanations

Twisted L-functions

Let $K = \mathbb{Q}(\zeta_m)$, and let $\chi : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

The (Hasse-Weil) L-function of E twisted by χ is given by

$$L_{E,\chi}(s) := \prod_{p} \frac{1}{L_{p}(\rho_{E,\ell} \otimes \chi, p^{-s})}.$$

Explanations

Twisted L-functions

Let $K = \mathbb{Q}(\zeta_m)$, and let $\chi : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

The (Hasse-Weil) L-function of E twisted by χ is given by

$$L_{E,\chi}(s) := \prod_{p} \frac{1}{L_{p}(\rho_{E,\ell} \otimes \chi, p^{-s})}.$$

Note that

$$L_{E}(s) = \sum_{n \in \mathbb{N}} \frac{a_n}{n^s} \quad \xrightarrow{\chi} \quad L_{E,\chi}(s) = \sum_{n \in \mathbb{N}} \frac{a_n \chi(n)}{n^s}.$$

Twisted L-functions

Let $K = \mathbb{Q}(\zeta_m)$, and let $\chi : (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

The (Hasse-Weil) L-function of E twisted by χ is given by

$$L_{E,\chi}(s) := \prod_{p} \frac{1}{L_{p}(\rho_{E,\ell} \otimes \chi, p^{-s})}.$$

Note that

$$L_{E}(s) = \sum_{n \in \mathbb{N}} \frac{a_n}{n^s} \quad \xrightarrow{\chi} \quad L_{E,\chi}(s) = \sum_{n \in \mathbb{N}} \frac{a_n \chi(n)}{n^s}.$$

By representation theory, there is a factorisation

$$L_{E/K}(s) = \prod_{\chi} L_{E,\chi}(s),$$

where $\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ runs over primitive Dirichlet characters.

Dirichlet twists

Real valu

Modular symbo

Explanations

A twisted BSD conjecture

Conjecture (Deligne–Gross)

The order of vanishing of $L_{E,\chi}(s)$ at s=1 is equal to $\langle \chi, E(K)_{\mathbb{C}} \rangle$.

Diriciliet twis

Modular symbo

F 1 ...

A twisted BSD conjecture

Conjecture (Deligne–Gross)

The order of vanishing of $L_{E,\chi}(s)$ at s=1 is equal to $\langle \chi, E(K)_{\mathbb{C}} \rangle$.

Unfortunately, a twisted version of strong BSD seems difficult.

A twisted BSD conjecture

Conjecture (Deligne–Gross)

The order of vanishing of $L_{E,\chi}(s)$ at s=1 is equal to $\langle \chi, E(K)_{\mathbb{C}} \rangle$.

Unfortunately, a twisted version of strong BSD seems difficult.

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be elliptic curves given by Cremona labels 307a1 and 307c1, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^\times \to \mathbb{C}^\times$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$.

A twisted BSD conjecture

Conjecture (Deligne-Gross)

The order of vanishing of $L_{E,\chi}(s)$ at s=1 is equal to $\langle \chi, E(K)_{\mathbb{C}} \rangle$.

Unfortunately, a twisted version of strong BSD seems difficult.

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be elliptic curves given by Cremona labels 307a1 and 307c1, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^\times \to \mathbb{C}^\times$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$. Then

$$C_{E_i/K} = R_{E_i/K} = \coprod_{E_i/K} = \operatorname{tor}_{E_i/K} = 1,$$

for $K \subseteq \mathbb{Q}(\zeta_{11})^+$,

A twisted BSD conjecture

Conjecture (Deligne-Gross)

The order of vanishing of $L_{E,\chi}(s)$ at s=1 is equal to $\langle \chi, E(K)_{\mathbb{C}} \rangle$.

Unfortunately, a twisted version of strong BSD seems difficult.

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be elliptic curves given by Cremona labels 307a1 and 307c1, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^\times \to \mathbb{C}^\times$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$. Then

$$C_{E_i/K} = R_{E_i/K} = \coprod_{E_i/K} = \operatorname{tor}_{E_i/K} = 1,$$

for $K \subseteq \mathbb{Q}(\zeta_{11})^+$, but

$$\mathcal{L}_{\textit{E}_{1},\chi}=1, \qquad \mathcal{L}_{\textit{E}_{2},\chi}=\zeta_{5}(1+\zeta_{5}^{4})^{2}. \label{eq:energy_energy}$$

Real value

Modular symb

 ${\sf Explanations}$

Algebraic twisted L-values

If $rk_E = 0$, the **algebraic twisted L-value** is given by

$$\mathcal{L}_{E,\chi} := \mathcal{L}_{E,\chi}(1) \cdot \frac{\tau(\overline{\chi})}{\Omega_E},$$

where $\tau(\overline{\chi})$ is the **Gauss sum**

$$\tau(\overline{\chi}) := \sum_{n \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \overline{\chi}(n) \zeta_m^n.$$

Algebraic twisted L-values

If $rk_E = 0$, the algebraic twisted L-value is given by

$$\mathcal{L}_{E,\chi} := \mathcal{L}_{E,\chi}(1) \cdot \frac{\tau(\overline{\chi})}{\Omega_E},$$

where $\tau(\overline{\chi})$ is the **Gauss sum**

$$\tau(\overline{\chi}) := \sum_{n \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \overline{\chi}(n) \zeta_m^n.$$

In general $\mathcal{L}_{E,\chi} \in \overline{\mathbb{Q}}$, but some integrality statements are known.

Algebraic twisted L-values

If $rk_E = 0$, the **algebraic twisted L-value** is given by

$$\mathcal{L}_{E,\chi} := \mathcal{L}_{E,\chi}(1) \cdot \frac{\tau(\overline{\chi})}{\Omega_E},$$

where $\tau(\overline{\chi})$ is the **Gauss sum**

$$\tau(\overline{\chi}) := \sum_{n \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \overline{\chi}(n) \zeta_m^n.$$

In general $\mathcal{L}_{\mathcal{E},\chi} \in \overline{\mathbb{Q}}$, but some integrality statements are known.

Theorem (Wiersema-Wuthrich)

If E is semistable optimal of conductor N_E , and if χ is primitive of order k and conductor coprime to N_E , then $\mathcal{L}_{E,\chi} \in \mathbb{Z}[\zeta_k]$.

There are stronger statements under the Manin constant conjecture.

Twisted elliptic L-values

David Ang

. . .

Dirichlet twist

Real values

Modular symbol

Explanations

Real algebraic twisted L-values

Assume that ${\rm rk}_{\it E}=$ 0, and that χ is primitive of order $\it k>$ 2.

Real algebraic twisted L-values

Assume that $\mathrm{rk}_E=0$, and that χ is primitive of order k>2.

Lemma (Kisilevsky-Nam)

Let ω_E be the "root number" of E. Then $\lambda_\chi \cdot \mathcal{L}_{E,\chi} \in \mathbb{Z}[\zeta_k]^+$, where

$$\lambda_{\chi} := \begin{cases} 1 & \omega_{E} \cdot \chi(-N_{E}) = 1 \\ \chi(m) - \overline{\chi(m)} & \omega_{E} \cdot \chi(-N_{E}) = -1 , \qquad m \in \mathbb{Z}. \\ 1 + \omega_{E} \cdot \overline{\chi(-N_{E})} & \omega_{E} \cdot \chi(-N_{E}) \neq \pm 1 \end{cases}$$

Real algebraic twisted L-values

Assume that $\mathrm{rk}_E=0$, and that χ is primitive of order k>2.

Lemma (Kisilevsky-Nam)

Let ω_E be the "root number" of E. Then $\lambda_\chi \cdot \mathcal{L}_{E,\chi} \in \mathbb{Z}[\zeta_k]^+$, where

$$\lambda_{\chi} := \begin{cases} 1 & \omega_{E} \cdot \chi(-N_{E}) = 1 \\ \chi(m) - \overline{\chi(m)} & \omega_{E} \cdot \chi(-N_{E}) = -1 , \qquad m \in \mathbb{Z}. \\ 1 + \omega_{E} \cdot \overline{\chi(-N_{E})} & \omega_{E} \cdot \chi(-N_{E}) \neq \pm 1 \end{cases}$$

This is called the **real algebraic twisted L-value** $\mathcal{L}_{E,\chi}^+$.

Real values

Explanations

Real algebraic twisted L-values

Assume that $\mathrm{rk}_E=0$, and that χ is primitive of order k>2.

Lemma (Kisilevsky-Nam)

Let ω_E be the "root number" of E. Then $\lambda_\chi \cdot \mathcal{L}_{E,\chi} \in \mathbb{Z}[\zeta_k]^+$, where

$$\lambda_{\chi} := \begin{cases} 1 & \omega_{E} \cdot \chi(-N_{E}) = 1 \\ \chi(m) - \overline{\chi(m)} & \omega_{E} \cdot \chi(-N_{E}) = -1 , \qquad m \in \mathbb{Z}. \\ 1 + \omega_{E} \cdot \overline{\chi(-N_{E})} & \omega_{E} \cdot \chi(-N_{E}) \neq \pm 1 \end{cases}$$

This is called the **real algebraic twisted L-value** $\mathcal{L}_{E,\chi}^+$.

Example
$$(k = 3)$$

$$\mathbb{Z} \ni \mathcal{L}_{E,\chi}^{+} = \begin{cases} \Re(\mathcal{L}_{E,\chi}) & \omega_{E} \cdot \chi(N_{E}) = 1 \\ 2\Re(\mathcal{L}_{E,\chi}) & \omega_{E} \cdot \chi(N_{E}) \neq 1 \end{cases}.$$

Twisted elliptic L-values

David Ang

. .

Dirichlet twict

Real values

Modular symbol

Explanations

Some observations

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ run over primes $p \equiv 1 \mod 3$.

. .

Dividulat twict

Real values

Modular symbols

Some observations

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ run over primes $p \equiv 1 \mod 3$.

Example (Kisilevsky–Nam)

Real values

Modular symbo

Some observations

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ run over primes $p \equiv 1 \mod 3$.

Example (Kisilevsky–Nam)

p	7	13	19	31	37	43	61	67	73	79	97
$\mathcal{L}_{E,\chi}^+$	5	-10	-10	5	20	5	-10	15	5	15	-30

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ run over primes $p \equiv 1 \mod 3$.

Example (Kisilevsky-Nam)

р	7	13	19	31	37	43	61	67	73	79	97
$\mathcal{L}_{E,\chi}^+$	5	-10	-10	5	20	5	-10	15	5	15	-30
$rac{\mathcal{L}_{E,\chi}^{+}}{\overline{\mathcal{L}}_{E,\chi}^{+}}$	1	-2	-2	1	4	1	-2	3	1	3	-6

$rac{\mathcal{L}_{E,\chi}^+}{\overline{\mathcal{L}_{E,\chi}^+}}$	103	109	127	139	151	157	163	181	193	199
$\mathcal{L}_{E,\chi}^+$	30	5	15	5	0	0	80	50	-5	-55
$\overline{\mathcal{L}}_{E,\chi}^{+,\infty}$	6	1	3	1	0	0	16	10	-1	-11

Here,
$$\overline{\mathcal{L}}_{E,\chi}^+ := \mathcal{L}_{E,\chi}^+ / \gcd_{\chi'} \{\mathcal{L}_{E,\chi'}^+ \}.$$

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ run over primes $p \equiv 1 \mod 3$.

Example (Kisilevsky–Nam)

р	7	13	19	31	37	43	61	67	73	79	97
$\mathcal{L}_{E,\chi}^{+}$	5	-10	-10	5	20	5	-10	15	5	15	-30
$\overline{\mathcal{L}}_{E,x}^{+}$	1	-2	-2	1	4	1	-2	3	1	3	-6
$\frac{\mathcal{L}_{E,\chi}^+}{\overline{\mathcal{L}}_{E,\chi}^+}$ $[\overline{\mathcal{L}}_{E,\chi}^+]_3$	1	1	1	1	1	1	1	0	1	0	0

р	103	109	127	139	151	157	163	181	193	199
$\mathcal{L}_{E,\chi}^+$	30	5	15	5	0	0	80	50	-5	-55
$\overline{\mathcal{L}}_{E,\chi}^{+}$	6	1	3	1	0	0	16	10	-1	-11
$\frac{\mathcal{L}_{\mathcal{E},\chi}^{+}}{\overline{\mathcal{L}}_{\mathcal{E},\chi}^{+}}$ $[\overline{\mathcal{L}}_{\mathcal{E},\chi}^{+}]_{3}$	0	1	0	1	0	0	1	1	2	1

Here,
$$\overline{\mathcal{L}}_{E,\chi}^+ := \mathcal{L}_{E,\chi}^+ / \gcd_{\chi'} \{\mathcal{L}_{E,\chi'}^+ \}.$$

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ run over primes $p \equiv 1 \mod 3$.

Example (Kisilevsky–Nam)

$\frac{\mathcal{L}_{E}^{+},\chi}{\frac{\overline{\mathcal{L}}_{E}^{+},\chi}{[\overline{\mathcal{L}}_{E}^{+},\chi}]_{3}}$ $[\#\mathcal{E}(\mathbb{F}_{p})]_{3}$	7	13	19	31	37	43	61	67	73	79	97
$\mathcal{L}_{E,\chi}^+$	5	-10	-10	5	20	5	-10	15	5	15	-30
$\overline{\mathcal{L}}_{E,\chi}^{+,\alpha}$	1	-2	-2	1	4	1	-2	3	1	3	-6
$[\overline{\mathcal{L}}_{F,\gamma}^+]_3$	1	1	1	1	1	1	1	0	1	0	0
$[\#E(\overline{\mathbb{F}}_p^{\prime})]_3$	1	1	2	1	2	2	2	0	1	0	0

р	103	109	127	139	151	157	163	181	193	199
$\mathcal{L}_{E,\chi}^+$	30	5	15	5	0	0	80	50	-5	-55
$\frac{\mathcal{L}_{E}^{+},\chi}{\overline{\mathcal{L}}_{E}^{+},\chi}$ $[\overline{\mathcal{L}}_{E}^{+},\chi]_{3}$ $[\#\mathcal{E}(\mathbb{F}_{p})]_{3}$	6	1	3	1	0	0	16	10	-1	-11
$[\overline{\mathcal{L}}_{E,\gamma}^+]_3$	0	1	0	1	0	0	1	1	2	1
$[\#E(\mathbb{F}_p)]_3$	0	1	0	1	0	0	1	1	1	2

Here,
$$\overline{\mathcal{L}}_{E,\chi}^+ := \mathcal{L}_{E,\chi}^+/\gcd_{\chi'}\{\mathcal{L}_{E,\chi'}^+\}.$$

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ run over primes $p \equiv 1 \mod 3$.

Example (Kisilevsky-Nam)

Let E be the elliptic curve given by the Cremona label 11a1.

	р	7	13	19	31	37	43	61	67	73	79	97
-	$\mathcal{L}_{E,\gamma}^+$	5	-10	-10	5	20	5	-10	15	5	15	-30
	$\overline{\mathcal{L}}_{E,\chi}^{+,\infty}$	1	-2	-2	1	4	1	-2	3	1	3	-6
	$[\overline{\mathcal{L}}_{F,\chi}^+]_3$	1	1	1	1	1	1	1	0	1	0	0
	$[\#E(\bar{\mathbb{F}}_p^{})]_3$	1	1	2	1	2	2	2	0	1	0	0
	$\frac{\mathcal{L}_{E,\chi}^{+}}{\overline{\mathcal{L}}_{E,\chi}^{+}}$ $[\overline{\mathcal{L}}_{E,\chi}^{+}]_{3}$ $[\#E(\mathbb{F}_{p})]_{3}$ $\chi(N_{E})$	ζ_3	ζ_3	1	$\overline{\zeta_3}$	1	1	1	$\overline{\zeta_3}$	ζ_3	$\overline{\zeta_3}$	$\overline{\zeta_3}$
	n	103	109	127	13	19 1	51	157	163	181	193	199

p	103	109	127	139	151	157	163	181	193	199
$\mathcal{L}_{E,\chi}^+$	30	5	15	5	0	0	80	50	-5	-55
$\overline{\mathcal{L}}_{E,\chi}^{+}$	6	1	3	1 1 1	0	0	16	10	-1	-11
$[\overline{\mathcal{L}}_{E,\chi}^+]_3$	0	1	0	1	0	0	1	1	2	1
$[\#E(\mathbb{F}_p)]_3$	0	1	0	1	0	0	1	1	1	2
$\chi(N_E)$	ζ_3	$\overline{\zeta_3}$	$\overline{\zeta_3}$	ζ_3	ζ_3	ζ_3	$\overline{\zeta_3}$	$\overline{\zeta_3}$	1	1

Here, $\overline{\mathcal{L}}_{E,\chi}^+ := \mathcal{L}_{E,\chi}^+/\gcd_{\chi'}\{\mathcal{L}_{E,\chi'}^+\}.$

ricar values

Explanations

Some phenomena

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \ . \\ 1 & \text{otherwise} \end{cases}$$

Explanations

Some phenomena

If E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 egin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \ \text{and} \ \chi(\textit{N}_E) = 1 \ . \ 1 & \text{otherwise} \end{cases}$$

KN computed $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 for 11a1, 14a1, 15a1, 17a1, 19a1, 37b1.

Explanations

Some phenomena

If E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_\rho) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_\rho) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \ . \\ 1 & \text{otherwise} \end{cases}$$

KN computed $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 for 11a1, 14a1, 15a1, 17a1, 19a1, 37b1.

• For 14a1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ often occurs.

Explanations

Some phenomena

If E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \\ 1 & \text{otherwise} \end{cases}$$

KN computed $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 for 11a1, 14a1, 15a1, 17a1, 19a1, 37b1.

- For 14a1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ often occurs.
- For 11a1, 15a1, 17a1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ rarely occurs.

Some phenomena

If E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \\ 1 & \text{otherwise} \end{cases}$$

KN computed $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 for 11a1, 14a1, 15a1, 17a1, 19a1, 37b1.

- For 14a1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ often occurs.
- For 11a1, 15a1, 17a1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ rarely occurs.
- For 19a1, 37b1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ never occurs.

Some phenomena

If E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \\ 1 & \text{otherwise} \end{cases}$$

KN computed $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 for 11a1, 14a1, 15a1, 17a1, 19a1, 37b1.

- For 14a1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ often occurs.
- For 11a1, 15a1, 17a1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ rarely occurs.
- For 19a1, 37b1, $\overline{\mathcal{L}}_{E,\chi}^+ \equiv 2 \mod 3$ never occurs.

Theorem (A.)

I can partially explain the DEW and KN phenomena.

Twisted elliptic L-values

David Ang

Introduction

District Land and Land

Real value

Modular symbols

Explanation

The modularity theorem

Let E be a semistable optimal elliptic curve over $\mathbb Q$ of conductor N_E .

Modular symbols

David Ar

The modularity theorem

Let E be a semistable optimal elliptic curve over $\mathbb Q$ of conductor N_E .

Theorem (Taylor-Wiles)

There is an eigenform $f_E \in S_2(\Gamma_0(N_E))$ with (Hecke) L-function $L_{f_E}(s) = L_E(s)$, such that the Hecke operator T_p has eigenvalue a_p .

The modularity theorem

Let E be a semistable optimal elliptic curve over $\mathbb Q$ of conductor N_E .

Theorem (Taylor-Wiles)

There is an eigenform $f_E \in S_2(\Gamma_0(N_E))$ with (Hecke) L-function $L_{f_E}(s) = L_E(s)$, such that the Hecke operator T_p has eigenvalue a_p .

For any cusp form $f \in S_k(\Gamma)$, its L-function is a Mellin transform

$$L_f(s) := \frac{(-2\pi i)^s}{\Gamma(s)} \int_0^\infty z^{s-1} f(z) \mathrm{d}z.$$

The modularity theorem

Let E be a semistable optimal elliptic curve over $\mathbb Q$ of conductor N_E .

Theorem (Taylor-Wiles)

There is an eigenform $f_E \in S_2(\Gamma_0(N_E))$ with (Hecke) L-function $L_{f_E}(s) = L_E(s)$, such that the Hecke operator T_p has eigenvalue a_p .

For any cusp form $f \in S_k(\Gamma)$, its L-function is a Mellin transform

$$L_f(s) := \frac{(-2\pi i)^s}{\Gamma(s)} \int_0^\infty z^{s-1} f(z) \mathrm{d}z.$$

Set s=1:

$$L_f(1) = -2\pi i \int_0^\infty f(z) dz =: -\langle \{0, \infty\}, f \rangle.$$

This is a *period* of the *modular symbol* $\{0, \infty\}$.

Twisted elliptic L-values

David Ang

Introduction

Dividulat twicts

Real value

Modular symbols

Explanations

Classical modular symbols

Let $\mathcal H$ be the extended upper half plane, and let $\phi:\mathcal H\twoheadrightarrow\mathcal H/\Gamma=:X_\Gamma.$

Twisted elliptic L-values

David Ang

Introduction

Dirichlet twist

Real va

Modular symbols

Explanations

Classical modular symbols

Let $\mathcal H$ be the extended upper half plane, and let $\phi:\mathcal H\twoheadrightarrow\mathcal H/\Gamma=:X_\Gamma.$

A **modular symbol** is a class $\{x,y\} \in H_1(X_{\Gamma},\mathbb{R})$ for any $x,y \in \mathcal{H}$.

Modular symbols

Explanations

Classical modular symbols

Let $\mathcal H$ be the extended upper half plane, and let $\phi:\mathcal H\twoheadrightarrow\mathcal H/\Gamma=:X_\Gamma.$

A **modular symbol** is a class $\{x,y\} \in H_1(X_{\Gamma},\mathbb{R})$ for any $x,y \in \mathcal{H}$.

• If $\Gamma \cdot x = \Gamma \cdot y$, then $\phi(x \leadsto y) \in H_1(X_{\Gamma}, \mathbb{Z})$, and conversely any $\gamma \in H_1(X_{\Gamma}, \mathbb{Z})$ arises from $x, y \in \mathcal{H}$ in the same Γ -orbit. Define $\{x, y\} := \phi(x \leadsto y)$.

Classical modular symbols

Let $\mathcal H$ be the extended upper half plane, and let $\phi:\mathcal H\twoheadrightarrow\mathcal H/\Gamma=:X_\Gamma.$

A **modular symbol** is a class $\{x,y\} \in H_1(X_{\Gamma},\mathbb{R})$ for any $x,y \in \mathcal{H}$.

- If $\Gamma \cdot x = \Gamma \cdot y$, then $\phi(x \rightsquigarrow y) \in H_1(X_{\Gamma}, \mathbb{Z})$, and conversely any $\gamma \in H_1(X_{\Gamma}, \mathbb{Z})$ arises from $x, y \in \mathcal{H}$ in the same Γ -orbit. Define $\{x,y\} := \phi(x \rightsquigarrow y).$
- The map $H_1(X_{\Gamma}, \mathbb{Z}) \to \operatorname{Hom}_{\mathbb{C}}(S_2(\Gamma), \mathbb{C})$ given by $\gamma \mapsto \langle \gamma, \cdot \rangle$ extends to $\psi: H_1(X_{\Gamma}, \mathbb{R}) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(S_2(\Gamma), \mathbb{C})$. Define $\{x,y\} := \psi^{-1}\langle \phi(x \rightsquigarrow y), \phi^*(\cdot) \rangle.$

Classical modular symbols

Let $\mathcal H$ be the extended upper half plane, and let $\phi:\mathcal H\twoheadrightarrow\mathcal H/\Gamma=:X_\Gamma.$

A modular symbol is a class $\{x,y\} \in H_1(X_{\Gamma},\mathbb{R})$ for any $x,y \in \mathcal{H}$.

- If $\Gamma \cdot x = \Gamma \cdot y$, then $\phi(x \leadsto y) \in H_1(X_{\Gamma}, \mathbb{Z})$, and conversely any $\gamma \in H_1(X_{\Gamma}, \mathbb{Z})$ arises from $x, y \in \mathcal{H}$ in the same Γ -orbit. Define $\{x, y\} := \phi(x \leadsto y)$.
- The map $H_1(X_{\Gamma}, \mathbb{Z}) \to \operatorname{Hom}_{\mathbb{C}}(S_2(\Gamma), \mathbb{C})$ given by $\gamma \mapsto \langle \gamma, \cdot \rangle$ extends to $\psi : H_1(X_{\Gamma}, \mathbb{R}) \xrightarrow{\sim} \operatorname{Hom}_{\mathbb{C}}(S_2(\Gamma), \mathbb{C})$. Define $\{x, y\} := \psi^{-1} \langle \phi(x \leadsto y), \phi^*(\cdot) \rangle$.

Note that

$$\{x,x\} = 0, \quad \{x,y\} = -\{y,x\}, \quad \{x,y\} + \{y,z\} = \{x,z\},$$

but also

$$\langle \{x, y\}, M \cdot f \rangle = \langle \{M \cdot x, M \cdot y\}, f \rangle, \qquad M \in \Gamma.$$

Real va

Modular symbols

Explanations

L-values as periods

Let $p \nmid N_E$. The Hecke operator T_p acts on $H_1(X_{\Gamma}, \mathbb{Q})$ by

$$T_p \cdot \{x, y\} = \{px, py\} + \sum_{n=0}^{p-1} \{\frac{x+n}{p}, \frac{y+n}{p}\}.$$

Let $p \nmid N_E$. The Hecke operator T_p acts on $H_1(X_{\Gamma},\mathbb{Q})$ by

$$T_p \cdot \{x, y\} = \{px, py\} + \sum_{n=0}^{p-1} \{\frac{x+n}{p}, \frac{y+n}{p}\}.$$

Lemma (Manin)

$$-\#E(\mathbb{F}_p)\cdot\mathcal{L}_E=\frac{1}{\Omega_E}\sum_{n=1}^{p-1}\langle\{0,\frac{n}{p}\},f_E\rangle.$$

Let $p \nmid N_E$. The Hecke operator T_p acts on $H_1(X_{\Gamma}, \mathbb{Q})$ by

$$T_p \cdot \{x, y\} = \{px, py\} + \sum_{n=0}^{p-1} \{\frac{x+n}{p}, \frac{y+n}{p}\}.$$

Lemma (Manin)

$$-\#E(\mathbb{F}_p)\cdot\mathcal{L}_E=\frac{1}{\Omega_E}\sum_{n=1}^{p-1}\langle\{0,\frac{n}{p}\},f_E\rangle.$$

Proof.

Set $\{x,y\} = \{0,\infty\}$ in the Hecke action and apply the pairing $\langle \cdot, f_E \rangle$:

$$(1+p-a_p)\cdot\langle\{0,\infty\},f_E\rangle=\sum_{n=1}^{p-1}\langle\{0,\frac{n}{p}\},f_E\rangle.$$

Let $p \nmid N_E$. The Hecke operator T_p acts on $H_1(X_{\Gamma}, \mathbb{Q})$ by

$$T_p \cdot \{x, y\} = \{px, py\} + \sum_{n=0}^{p-1} \{\frac{x+n}{p}, \frac{y+n}{p}\}.$$

Lemma (Manin)

$$-\#E(\mathbb{F}_p)\cdot\mathcal{L}_E=\frac{1}{\Omega_E}\sum_{n=1}^{p-1}\langle\{0,\frac{n}{p}\},f_E\rangle.$$

Proof.

Set $\{x,y\} = \{0,\infty\}$ in the Hecke action and apply the pairing $\langle \cdot, f_E \rangle$:

$$\underbrace{(1+p-a_p)}_{\#E(\mathbb{F}_p)}\cdot\underbrace{\langle\{0,\infty\},f_E\rangle}_{-L_E(1)}=\sum_{n=1}^{p-1}\underbrace{\langle\{0,\frac{n}{p}\},f_E\rangle}_{???}.$$

Let $p \nmid N_E$. The Hecke operator T_p acts on $H_1(X_{\Gamma}, \mathbb{Q})$ by

$$T_p \cdot \{x, y\} = \{px, py\} + \sum_{n=0}^{p-1} \{\frac{x+n}{p}, \frac{y+n}{p}\}.$$

Lemma (Manin)

$$-\#E(\mathbb{F}_p)\cdot\mathcal{L}_E=\frac{1}{\Omega_E}\sum_{n=1}^{p-1}\langle\{0,\frac{n}{p}\},f_E\rangle.$$

Proof.

Set $\{x,y\} = \{0,\infty\}$ in the Hecke action and apply the pairing $\langle \cdot, f_E \rangle$:

$$\underbrace{(1+p-a_p)}_{\#E(\mathbb{F}_p)}\cdot\underbrace{\langle\{0,\infty\},f_E\rangle}_{-L_E(1)}=\sum_{n=1}^{p-1}\underbrace{\langle\{0,\frac{n}{p}\},f_E\rangle}_{???}.$$

Multiply by $\frac{1}{\Omega}$.

Explanations

Twisted L-values as periods

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

Lemma (Manin)

$$\mathcal{L}_{E,\chi} = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0, \frac{n}{p}\}, f_E \rangle.$$

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

Lemma (Manin)

$$\mathcal{L}_{E,\chi} = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0, \frac{n}{p}\}, f_E \rangle.$$

Proof.

For any $m \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, the discrete Fourier transform of $\chi(m)$ is

$$\chi(m) = \frac{1}{\tau(\overline{\chi})} \sum_{p=1}^{p-1} \overline{\chi}(n) \zeta_p^{mn}.$$

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

Lemma (Manin)

$$\mathcal{L}_{E,\chi} = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0, \frac{n}{p}\}, f_E \rangle.$$

Proof.

For any $m \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, the discrete Fourier transform of $\chi(m)$ is

$$\chi(m) = \frac{1}{\tau(\overline{\chi})} \sum_{n=1}^{p-1} \overline{\chi}(n) \zeta_p^{mn}.$$

Substitute into $\sum_{m} a_{m} \chi(m) q^{m}$ and apply the Mellin transform:

$$L_{E,\chi}(1) = \frac{1}{\tau(\overline{\chi})} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0,\infty\}, M \cdot f_E \rangle, \qquad M := \begin{pmatrix} p & k \\ 0 & p \end{pmatrix}.$$

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

Lemma (Manin)

$$\mathcal{L}_{E,\chi} = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0, \frac{n}{p}\}, f_E \rangle.$$

Proof.

For any $m \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, the discrete Fourier transform of $\chi(m)$ is

$$\chi(m) = \frac{1}{\tau(\overline{\chi})} \sum_{n=1}^{p-1} \overline{\chi}(n) \zeta_p^{mn}.$$

Substitute into $\sum_{m} a_{m} \chi(m) q^{m}$ and apply the Mellin transform:

$$L_{E,\chi}(1) = \frac{1}{\tau(\overline{\chi})} \sum_{n=1}^{p-1} \overline{\chi}(n) \underbrace{\langle \{0,\infty\}, M \cdot f_E \rangle}_{\text{apply properties}}, \qquad M := \begin{pmatrix} p & k \\ 0 & p \end{pmatrix}.$$

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

Lemma (Manin)

$$\mathcal{L}_{E,\chi} = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0, \frac{n}{p}\}, f_E \rangle.$$

Proof.

For any $m \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, the discrete Fourier transform of $\chi(m)$ is

$$\chi(m) = \frac{1}{\tau(\overline{\chi})} \sum_{n=1}^{p-1} \overline{\chi}(n) \zeta_p^{mn}.$$

Substitute into $\sum_{m} a_{m} \chi(m) q^{m}$ and apply the Mellin transform:

$$L_{E,\chi}(1) = \frac{1}{\tau(\overline{\chi})} \sum_{n=1}^{p-1} \overline{\chi}(n) \underbrace{\langle \{0,\infty\}, M \cdot f_E \rangle}_{\text{apply properties}}, \qquad M := \begin{pmatrix} p & k \\ 0 & p \end{pmatrix}.$$

Multiply by $\frac{\tau(\overline{\chi})}{\Omega_r}$.

Twisted elliptic L-values

David Ang

Introduction

Dirichlet twic

Real va

Modular symbols

Explanations

A congruence for L-values

Let E be a semistable optimal elliptic curve over \mathbb{Q} of conductor N_E , let $p \nmid N_E$, and let $\chi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character.

Explanations

A congruence for L-values

Let E be a semistable optimal elliptic curve over \mathbb{Q} of conductor N_E , let $p \nmid N_E$, and let $\chi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. Then

$$-\#E(\mathbb{F}_p) \cdot \mathcal{L}_E = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \langle \{0, \frac{n}{p}\}, f_E \rangle,$$
$$\mathcal{L}_{E,\chi} = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0, \frac{n}{p}\}, f_E \rangle.$$

A congruence for L-values

Let E be a semistable optimal elliptic curve over \mathbb{Q} of conductor N_E , let $p \nmid N_E$, and let $\chi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character. Then

$$-\#E(\mathbb{F}_p) \cdot \mathcal{L}_E = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \langle \{0, \frac{n}{p}\}, f_E \rangle,$$
$$\mathcal{L}_{E,\chi} = \frac{1}{\Omega_E} \sum_{n=1}^{p-1} \overline{\chi}(n) \langle \{0, \frac{n}{p}\}, f_E \rangle.$$

Corollary (A)

If χ has prime order k, then

$$-\#E(\mathbb{F}_p)\cdot\mathcal{L}_E\equiv\mathcal{L}_{E,\chi}\mod(1-\zeta_k).$$

Proof.

By integrality, the lemmata, and $\overline{\chi} \equiv 1 \mod (1 - \zeta_k)$.

Twisted elliptic L-values

David Ang

Introduction

Dirichlet twist

Real value

Modular symbols

Explanation

A congruence for cubic twists

Let $\chi:(\mathbb{Z}/p\mathbb{Z})^{\times}\to\mathbb{C}^{\times}$ be a cubic primitive Dirichlet character.

Explanations

A congruence for cubic twists

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a cubic primitive Dirichlet character.

Corollary (B)

$$\mathcal{L}_{E,\chi}^{+} \equiv_{3} \# E(\mathbb{F}_{p}) \cdot \mathcal{L}_{E} \cdot \begin{cases} 2 & \omega_{E} \cdot \chi(N_{E}) = 1 \\ 1 & \omega_{E} \cdot \chi(N_{E}) \neq 1 \end{cases}.$$

Proof.

By cases of corollary (A).

A congruence for cubic twists

Let $\chi: (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a cubic primitive Dirichlet character.

Corollary (B)

$$\mathcal{L}_{E,\chi}^{+} \equiv_{3} \# E(\mathbb{F}_{p}) \cdot \mathcal{L}_{E} \cdot \begin{cases} 2 & \omega_{E} \cdot \chi(N_{E}) = 1 \\ 1 & \omega_{E} \cdot \chi(N_{E}) \neq 1 \end{cases}.$$

Proof

By cases of corollary (A).

Corollary (C)

$$\overline{\mathcal{L}}_{E,\chi}^{+} \equiv_{3} \#E(\mathbb{F}_{p}) \cdot \mathcal{L}_{E} \cdot \gcd\{\mathcal{L}_{E,\chi'}^{+}\} \cdot \begin{cases} 2 & \omega_{E} \cdot \chi(N_{E}) = 1 \\ 1 & \omega_{E} \cdot \chi(N_{E}) \neq 1 \end{cases}.$$

Proof.

By cases of corollary (B).

Real va

Modular symbol

Explanations

DEW phenomena

Recall that if E_1 and E_2 are elliptic curves given by Cremona labels 307a1 and 307c1, and $\chi:(\mathbb{Z}/11\mathbb{Z})^\times\to\mathbb{C}^\times$ is the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2)=\zeta_5$, then

$$C_{E_i/K} = R_{E_i/K} = \coprod_{E_i/K} = \operatorname{tor}_{E_i/K} = 1,$$

for $K \subseteq \mathbb{Q}(\zeta_{11})^+$, but

$$\mathcal{L}_{E_1,\chi} = 1, \qquad \mathcal{L}_{E_2,\chi} = \zeta_5 (1 + \zeta_5^4)^2.$$

Explanations

DEW phenomena

Recall that if E_1 and E_2 are elliptic curves given by Cremona labels 307a1 and 307c1, and $\chi:(\mathbb{Z}/11\mathbb{Z})^\times\to\mathbb{C}^\times$ is the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2)=\zeta_5$, then

$$C_{E_i/K} = R_{E_i/K} = \coprod_{E_i/K} = \operatorname{tor}_{E_i/K} = 1,$$

for $K \subseteq \mathbb{Q}(\zeta_{11})^+$, but

$$\mathcal{L}_{E_1,\chi} = 1, \qquad \mathcal{L}_{E_2,\chi} = \zeta_5 (1 + \zeta_5^4)^2.$$

Note that $\mathcal{L}_{E_i} = 1$, and

$$\#E_1(\mathbb{F}_{11}) = 9, \qquad \#E_2(\mathbb{F}_{11}) = 16,$$

so corollary (A) says

$$\mathcal{L}_{E_1,\chi} \not\equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5).$$

DEW phenomena

Recall that if E_1 and E_2 are elliptic curves given by Cremona labels 307a1 and 307c1, and $\chi:(\mathbb{Z}/11\mathbb{Z})^\times\to\mathbb{C}^\times$ is the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2)=\zeta_5$, then

$$C_{E_i/K} = R_{E_i/K} = \coprod_{E_i/K} = \operatorname{tor}_{E_i/K} = 1,$$

for $K \subseteq \mathbb{Q}(\zeta_{11})^+$, but

$$\mathcal{L}_{E_1,\chi} = 1, \qquad \mathcal{L}_{E_2,\chi} = \zeta_5 (1 + \zeta_5^4)^2.$$

Note that $\mathcal{L}_{E_i} = 1$, and

$$\#E_1(\mathbb{F}_{11}) = 9, \qquad \#E_2(\mathbb{F}_{11}) = 16,$$

so corollary (A) says

$$\mathcal{L}_{E_1,\chi} \not\equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5).$$

In fact, corollary (A) partially explains all examples in DEW where χ is quintic, and fully explains all examples in DEW where χ is cubic.

Real val

Modular symbol

Explanations

Insufficiency of congruence

Unfortunately, there are elliptic curves E_1 and E_2 over \mathbb{Q} , where $\mathcal{L}_{E_1,\chi} \equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5)$, but $\mathcal{L}_{E_1,\chi} \neq \mathcal{L}_{E_2,\chi}$.

Modular symbol

Explanations

Insufficiency of congruence

Unfortunately, there are elliptic curves E_1 and E_2 over \mathbb{Q} , where $\mathcal{L}_{E_1,\chi} \equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5)$, but $\mathcal{L}_{E_1,\chi} \neq \mathcal{L}_{E_2,\chi}$.

Example (A.)

Let E_1 and E_2 be elliptic curves given by Cremona labels 130b3 and 312c3, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$.

Insufficiency of congruence

Unfortunately, there are elliptic curves E_1 and E_2 over \mathbb{Q} , where $\mathcal{L}_{E_1,\chi} \equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5)$, but $\mathcal{L}_{E_1,\chi} \neq \mathcal{L}_{E_2,\chi}$.

Example (A.)

Let E_1 and E_2 be elliptic curves given by Cremona labels 130b3 and 312c3, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$. Then

$$C_{E_i/K}=2, \qquad R_{E_i/K}=1, \qquad \mathrm{III}_{E_i/K}\cong \mathrm{tor}_{E_i/K}\cong (\mathbb{Z}/2\mathbb{Z})^2,$$
 for $K\subset \mathbb{Q}(\zeta_{11})^+$,

Insufficiency of congruence

Unfortunately, there are elliptic curves E_1 and E_2 over \mathbb{Q} , where $\mathcal{L}_{E_1,\chi} \equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5)$, but $\mathcal{L}_{E_1,\chi} \neq \mathcal{L}_{E_2,\chi}$.

Example (A.)

Let E_1 and E_2 be elliptic curves given by Cremona labels 130b3 and 312c3, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$. Then

$$C_{E_i/K} = 2, \qquad R_{E_i/K} = 1, \qquad \text{III}_{E_i/K} \cong \text{tor}_{E_i/K} \cong (\mathbb{Z}/2\mathbb{Z})^2,$$

for
$$K \subseteq \mathbb{Q}(\zeta_{11})^+$$
, and furthermore $\#E_i(\mathbb{F}_{11}) = 12$ and $\mathcal{L}_{E_i} = \frac{1}{2}$,

Insufficiency of congruence

Unfortunately, there are elliptic curves E_1 and E_2 over \mathbb{Q} , where $\mathcal{L}_{E_1,\chi} \equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5)$, but $\mathcal{L}_{E_1,\chi} \neq \mathcal{L}_{E_2,\chi}$.

Example (A.)

Let E_1 and E_2 be elliptic curves given by Cremona labels 130b3 and 312c3, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$. Then

$$C_{E_i/K} = 2,$$
 $R_{E_i/K} = 1,$ $\coprod_{E_i/K} \cong \operatorname{tor}_{E_i/K} \cong (\mathbb{Z}/2\mathbb{Z})^2,$

for $K\subseteq \mathbb{Q}(\zeta_{11})^+$, and furthermore $\#E_i(\mathbb{F}_{11})=12$ and $\mathcal{L}_{E_i}=\frac{1}{2}$, but

$$\mathcal{L}_{E_1,\chi} = -4\zeta_5^3, \qquad \mathcal{L}_{E_2,\chi} = -4\zeta_5,$$

which are not equal but congruent modulo $(1-\zeta_5)$.

Insufficiency of congruence

Unfortunately, there are elliptic curves E_1 and E_2 over \mathbb{Q} , where $\mathcal{L}_{E_1,\chi} \equiv \mathcal{L}_{E_2,\chi} \mod (1-\zeta_5)$, but $\mathcal{L}_{E_1,\chi} \neq \mathcal{L}_{E_2,\chi}$.

Example (A.)

Let E_1 and E_2 be elliptic curves given by Cremona labels 130b3 and 312c3, and let $\chi: (\mathbb{Z}/11\mathbb{Z})^\times \to \mathbb{C}^\times$ be the primitive Dirichlet character of order 5 and conductor 11 given by $\chi(2) = \zeta_5$. Then

$$C_{E_i/K} = 2, \qquad R_{E_i/K} = 1, \qquad \coprod_{E_i/K} \cong \operatorname{tor}_{E_i/K} \cong (\mathbb{Z}/2\mathbb{Z})^2,$$

for $K\subseteq \mathbb{Q}(\zeta_{11})^+$, and furthermore $\#E_i(\mathbb{F}_{11})=12$ and $\mathcal{L}_{E_i}=\frac{1}{2}$, but

$$\mathcal{L}_{E_1,\chi} = -4\zeta_5^3, \qquad \mathcal{L}_{E_2,\chi} = -4\zeta_5,$$

which are not equal but congruent modulo $(1-\zeta_5)$.

Heuristically, the norm of $\overline{\mathcal{L}}_{E,\chi}^+$ is the χ -component of \coprod_E .

KN phenomena

Recall that if E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 egin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \ \mathrm{and} \ \chi(\mathit{N}_E) = 1 \ . \ 1 & \mathrm{otherwise} \end{cases}$$

KN phenomena

Recall that if E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \ . \\ 1 & \text{otherwise} \end{cases}$$

Note that $\mathcal{L}_E \cdot \gcd_{\gamma'} \{\mathcal{L}_{F,\gamma'}^+\} = 1$ and $\omega_E = 1$, so corollary (C) says

$$\overline{\mathcal{L}}_{E,\chi}^{+} \equiv_{3} \begin{cases} 2\#E(\mathbb{F}_{p}) & \chi(N_{E}) = 1\\ \#E(\mathbb{F}_{p}) & \chi(N_{E}) \neq 1 \end{cases}.$$

KN phenomena

Recall that if E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \ . \\ 1 & \text{otherwise} \end{cases}$$

Note that $\mathcal{L}_E \cdot \gcd_{\chi'}\{\mathcal{L}_{E,\chi'}^+\} = 1$ and $\omega_E = 1$, so corollary (C) says

$$\overline{\mathcal{L}}_{E,\chi}^{+} \equiv_{3} \begin{cases} 2\#E(\mathbb{F}_{p}) & \chi(N_{E}) = 1\\ \#E(\mathbb{F}_{p}) & \chi(N_{E}) \neq 1 \end{cases}.$$

This fully explains the three cases, except for

$$\#E(\mathbb{F}_p) \equiv 2 \mod 3 \implies \chi(N_E) = 1.$$

KN phenomena

Recall that if E is the elliptic curve given by the Cremona label 11a1,

$$\overline{\mathcal{L}}_{E,\chi}^+ \equiv_3 \begin{cases} 0 & \#E(\mathbb{F}_p) \equiv 0 \mod 3 \\ 2 & \#E(\mathbb{F}_p) \equiv 1 \mod 3 \text{ and } \chi(\textit{N}_E) = 1 \ . \\ 1 & \text{otherwise} \end{cases}$$

Note that $\mathcal{L}_E \cdot \gcd_{\chi'} \{\mathcal{L}_{E,\chi'}^+\} = 1$ and $\omega_E = 1$, so corollary (C) says

$$\overline{\mathcal{L}}_{E,\chi}^{+} \equiv_{3} \begin{cases} 2\#E(\mathbb{F}_{p}) & \chi(N_{E}) = 1\\ \#E(\mathbb{F}_{p}) & \chi(N_{E}) \neq 1 \end{cases}.$$

This fully explains the three cases, except for

$$\#E(\mathbb{F}_p) \equiv 2 \mod 3 \implies \chi(N_E) = 1.$$

In fact, corollary (C) fully explains $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 for any E where

- E does not have rational 3-isogenies, and
- the 3-division field $\mathbb{Q}(x(E[3]))$ of E contains $\sqrt[3]{N_E}$.

Wodular Symbol

Explanations

The missing piece

Theorem (A.–Dokchitser)

Assume that

- E does not have rational 3-isogenies, and
- the 3-division field $\mathbb{Q}(x(E[3]))$ of E contains $\sqrt[3]{N_E}$.

If
$$\#E(\mathbb{F}_p) \equiv 2 \mod 3$$
, then $\chi(N_E) = 1$.

The missing piece

Theorem (A.-Dokchitser)

Assume that

- E does not have rational 3-isogenies, and
- the 3-division field $\mathbb{Q}(x(E[3]))$ of E contains $\sqrt[3]{N_E}$.

If
$$\#E(\mathbb{F}_p) \equiv 2 \mod 3$$
, then $\chi(N_E) = 1$.

Proof.

The assumptions imply that

$$\operatorname{Gal}(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \cong \operatorname{PGL}_2(\mathbb{F}_3) \cong S_4.$$

The missing piece

Theorem (A.-Dokchitser)

Assume that

- E does not have rational 3-isogenies, and
- the 3-division field $\mathbb{Q}(x(E[3]))$ of E contains $\sqrt[3]{N_E}$.

If
$$\#E(\mathbb{F}_p) \equiv 2 \mod 3$$
, then $\chi(N_E) = 1$.

Proof.

The assumptions imply that

$$\operatorname{Gal}(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \cong \operatorname{PGL}_2(\mathbb{F}_3) \cong S_4.$$

This has a quotient

$$\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{N_E},\zeta_3)/\mathbb{Q})\cong S_4/K_4\cong S_3.$$

The missing piece

Theorem (A.-Dokchitser)

Assume that

- E does not have rational 3-isogenies, and
- the 3-division field $\mathbb{Q}(x(E[3]))$ of E contains $\sqrt[3]{N_E}$.

If
$$\#E(\mathbb{F}_p) \equiv 2 \mod 3$$
, then $\chi(N_E) = 1$.

Proof.

The assumptions imply that

$$\operatorname{Gal}(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \cong \operatorname{PGL}_2(\mathbb{F}_3) \cong S_4.$$

This has a quotient

$$\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{N_E},\zeta_3)/\mathbb{Q})\cong S_4/K_4\cong S_3.$$

If $\#E(\mathbb{F}_p) \equiv 2 \mod 3$, then $a_p \equiv 0 \mod 3$, so $\phi_p^2 = 1$ in S_4 .

The missing piece

Theorem (A.–Dokchitser)

Assume that

- E does not have rational 3-isogenies, and
- the 3-division field $\mathbb{Q}(x(E[3]))$ of E contains $\sqrt[3]{N_E}$.

If
$$\#E(\mathbb{F}_p) \equiv 2 \mod 3$$
, then $\chi(N_E) = 1$.

Proof.

The assumptions imply that

$$\operatorname{Gal}(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \cong \operatorname{PGL}_2(\mathbb{F}_3) \cong S_4.$$

This has a quotient

$$\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{N_E},\zeta_3)/\mathbb{Q})\cong S_4/K_4\cong S_3.$$

If $\#E(\mathbb{F}_p) \equiv 2 \mod 3$, then $a_p \equiv 0 \mod 3$, so $\phi_p^2 = 1$ in S_4 . By group theory, $\phi_p = 1$ in S_3 , but it acts as $\chi(N_E)$ on $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

Twisted elliptic L-values

David Ang

Introduction

Dirichlet twist

Real values

recur varaes

iviodular symbol

Explanations

Other KN phenomena

Key idea: understand how ϕ_p acts on $\mathbb{Q}(x(E[3]))$ and $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

Introduction

District to

Real va

Modular symbo

Explanations

Other KN phenomena

Key idea: understand how ϕ_p acts on $\mathbb{Q}(x(E[3]))$ and $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

In general, $\phi_p \neq 1$ in $Gal(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \leq PGL_2(\mathbb{F}_3)$.

Other KN phenomena

Key idea: understand how ϕ_p acts on $\mathbb{Q}(x(E[3]))$ and $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

In general, $\phi_p \neq 1$ in $Gal(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \leq PGL_2(\mathbb{F}_3)$.

• If E has rational 3-isogenies, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is partially explained by how ϕ_p acts on the 9-division field $\mathbb{Q}(x(E[9]))$.

Other KN phenomena

Key idea: understand how ϕ_p acts on $\mathbb{Q}(x(E[3]))$ and $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

In general, $\phi_p \neq 1$ in $Gal(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \leq PGL_2(\mathbb{F}_3)$.

- If E has rational 3-isogenies, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is partially explained by how ϕ_p acts on the 9-division field $\mathbb{Q}(x(E[9]))$.
- If $\mathbb{Q}(x(E[3]))$ does not contain $\sqrt[3]{N_E}$, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is fully explained by how ϕ_P acts on $\mathbb{Q}(x(E[3]), \sqrt[3]{N_E})$.

Other KN phenomena

Key idea: understand how ϕ_p acts on $\mathbb{Q}(x(E[3]))$ and $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

In general, $\phi_p \neq 1$ in $Gal(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \leq PGL_2(\mathbb{F}_3)$.

- If E has rational 3-isogenies, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is partially explained by how ϕ_p acts on the 9-division field $\mathbb{Q}(x(E[9]))$.
- If $\mathbb{Q}(x(E[3]))$ does not contain $\sqrt[3]{N_E}$, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is fully explained by how ϕ_P acts on $\mathbb{Q}(x(E[3]), \sqrt[3]{N_E})$.

The elliptic curves given by Cremona labels 11a1, 15a1, 17a1 are generic, but those given by 14a1, 19a1, 37b1 are special.

Other KN phenomena

Key idea: understand how ϕ_p acts on $\mathbb{Q}(x(E[3]))$ and $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

In general, $\phi_p \neq 1$ in $Gal(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \leq PGL_2(\mathbb{F}_3)$.

- If E has rational 3-isogenies, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is partially explained by how ϕ_p acts on the 9-division field $\mathbb{Q}(x(E[9]))$.
- If $\mathbb{Q}(x(E[3]))$ does not contain $\sqrt[3]{N_E}$, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is fully explained by how ϕ_P acts on $\mathbb{Q}(x(E[3]), \sqrt[3]{N_E})$.

The elliptic curves given by Cremona labels 11a1, 15a1, 17a1 are generic, but those given by 14a1, 19a1, 37b1 are special.

Theorem (A.)

I understand how ϕ_p acts on $\mathbb{Q}(x(E[9]), \sqrt[3]{N_E})$.

Other KN phenomena

Key idea: understand how ϕ_p acts on $\mathbb{Q}(x(E[3]))$ and $\mathbb{Q}(\sqrt[3]{N_E}, \zeta_3)$.

In general, $\phi_p \neq 1$ in $Gal(\mathbb{Q}(x(E[3]))/\mathbb{Q}) \leq PGL_2(\mathbb{F}_3)$.

- If E has rational 3-isogenies, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is partially explained by how ϕ_p acts on the 9-division field $\mathbb{Q}(x(E[9]))$.
- If $\mathbb{Q}(x(E[3]))$ does not contain $\sqrt[3]{N_E}$, then $\overline{\mathcal{L}}_{E,\chi}^+$ modulo 3 is fully explained by how ϕ_P acts on $\mathbb{Q}(x(E[3]), \sqrt[3]{N_E})$.

The elliptic curves given by Cremona labels 11a1, 15a1, 17a1 are generic, but those given by 14a1, 19a1, 37b1 are special.

Theorem (A.)

I understand how ϕ_p acts on $\mathbb{Q}(x(E[9]), \sqrt[3]{N_E})$.

This crucially uses the classification of 3-adic images of Galois for elliptic curves over $\mathbb Q$ by Rouse–Sutherland–Zureick-Brown.

Real va

Modular symbo

Explanation:

Future work

Here are some potential extensions, listed in increasing difficulty:

- replace Q with a global field
- replace χ with an Artin representation
- replace E with the Jacobian of a higher genus curve
- remove the $rk_E = 0$ assumption

Thank you!