Twisted elliptic L-values over global fields

David Ang

London School of Geometry and Number Theory

Algebraic Number Theory

Thursday, 5 September 2024

<ロト < 部 ト < 言 ト < 言 ト 言 の Q () 1/56

The BSD formula ●000	Algebraic L-values	A twisted BSD formula 0000	Global function fields
Twisted L-s	eries		

Let A be an abelian variety over a global field K, and let χ be a character of a finite group G.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
●000	0000	0000	
Twisted L-serie	S		

Let A be an abelian variety over a global field K, and let χ be a character of a finite group G. The **Artin–Hasse–Weil L-series** of (A, χ) is

$$L(A,\chi,s) := \prod_{\mathfrak{p}} \frac{1}{L_{\mathfrak{p}}(\rho_{A,\ell}^{\vee}\otimes\chi,q_{\mathfrak{p}}^{-s})},$$

where $L_{\mathfrak{p}}(\rho, T) := \det(1 - T \cdot \phi_{\mathfrak{p}} \mid \rho^{I_{\mathfrak{p}}}).$

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
●000	0000	0000	000
Twisted L-ser	ies		

Let A be an abelian variety over a global field K, and let χ be a character of a finite group G. The **Artin–Hasse–Weil L-series** of (A, χ) is

$$L(A,\chi,s) := \prod_{\mathfrak{p}} \frac{1}{L_{\mathfrak{p}}(
ho_{A,\ell}^{\vee}\otimes\chi,q_{\mathfrak{p}}^{-s})},$$

where $L_{\mathfrak{p}}(\rho, T) := \det(1 - T \cdot \phi_{\mathfrak{p}} \mid \rho^{I_{\mathfrak{p}}}).$

If $\chi = 1$, then $L(A, \chi, s) = L(A, s)$ is the Hasse–Weil L-series of A.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
●000	0000	0000	000
Twicted L	orioc		

Let A be an abelian variety over a global field K, and let χ be a character of a finite group G. The **Artin–Hasse–Weil L-series** of (A, χ) is

$$L(A,\chi,s) := \prod_{\mathfrak{p}} \frac{1}{L_{\mathfrak{p}}(
ho_{A,\ell}^{\vee}\otimes\chi,q_{\mathfrak{p}}^{-s})},$$

where $L_{\mathfrak{p}}(\rho, T) := \det(1 - T \cdot \phi_{\mathfrak{p}} \mid \rho^{I_{\mathfrak{p}}}).$

If $\chi = 1$, then $L(A, \chi, s) = L(A, s)$ is the **Hasse–Weil L-series** of A.

If L is a finite Galois extension of K with Galois group G, then

$$L(A/L, s) = L(A, \operatorname{Ind}_{\{1\}}^{G} \mathbb{1}, s) = \prod_{\chi} L(A, \chi, s),$$

where χ runs over all the irreducible characters Irr(G) of G.

The	BSD	formula
000	20	

The Birch–Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer)

The order of vanishing of L(A, s) at s = 1 is equal to rk(A). Furthermore, the leading term of L(A, s) at s = 1 is equal to

$$\mathcal{L}^*(\mathcal{A},1) = rac{\Omega(\mathcal{A})\cdot \operatorname{Reg}(\mathcal{A})\cdot \operatorname{Tam}(\mathcal{A})\cdot \#\operatorname{HII}(\mathcal{A})}{\sqrt{|\Delta_{\mathcal{K}}|}\cdot \#\operatorname{tor}(\mathcal{A})\cdot \#\operatorname{tor}(\widehat{\mathcal{A}})}$$

The Birch–Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer)

The order of vanishing of L(A, s) at s = 1 is equal to rk(A). Furthermore, the leading term of L(A, s) at s = 1 is equal to

$$\mathcal{L}^{*}(A,1) = rac{\Omega(A) \cdot \operatorname{Reg}(A) \cdot \operatorname{Tam}(A) \cdot \#\operatorname{III}(A)}{\sqrt{|\Delta_{\mathcal{K}}|} \cdot \#\operatorname{tor}(A) \cdot \#\operatorname{tor}(\widehat{A})}$$

This is known in some cases when A is an elliptic curve.

- If K = Q and the order of vanishing is at most 1, then the rank conjecture is proven by Gross-Zagier 1986 and Kolyvagin 1988, and much of the ℓ-part of the leading term conjecture is proven by Keller-Yin 2024 and Burungale-Castella-Skinner 2024.
- If K = 𝔽_p(C), then Kato-Trihan 2003 proved that the rank conjecture is equivalent to the finiteness of III(A)[ℓ[∞]] for some prime ℓ ≠ p and implies the leading term conjecture.

The	BSD	formula
00	0	

A twisted BSD formula

Global function fields 000

The Deligne–Gross conjecture

Conjecture (Deligne–Gross)

The order of vanishing of $L(A, \chi, s)$ at s = 1 is equal to $\langle \chi, A(L)_{\mathbb{C}} \rangle$.

The Deligne–Gross conjecture

Conjecture (Deligne-Gross)

The order of vanishing of $L(A, \chi, s)$ at s = 1 is equal to $\langle \chi, A(L)_{\mathbb{C}} \rangle$.

This is known in some cases when A is an elliptic curve over \mathbb{Q} .

- If A has no potential complex multiplication, then Kato 2004 proved this for one-dimensional Artin representations.
- If the order of vanishing is 0, then Bertolini–Darmon–Rotger 2015 proved this for odd irreducible two-dimensional Artin representations.
- If the order of vanishing is 0, then Darmon-Rotger 2017 proved this for certain self-dual Artin representations of dimension at most 4.

The Deligne–Gross conjecture

Conjecture (Deligne-Gross)

The order of vanishing of $L(A, \chi, s)$ at s = 1 is equal to $\langle \chi, A(L)_{\mathbb{C}} \rangle$.

This is known in some cases when A is an elliptic curve over \mathbb{Q} .

- If A has no potential complex multiplication, then Kato 2004 proved this for one-dimensional Artin representations.
- If the order of vanishing is 0, then Bertolini–Darmon–Rotger 2015 proved this for odd irreducible two-dimensional Artin representations.
- If the order of vanishing is 0, then Darmon-Rotger 2017 proved this for certain self-dual Artin representations of dimension at most 4.

Theorem (Bisatt–Dokchitser 2018)

Assume the Deligne–Gross conjecture. If $\chi \in Irr(C_q \rtimes C_{p^n})$ with $q \not\equiv 1 \mod p^n$, then p divides the order of vanishing of $L(A, \chi, s)$ at s = 1.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
000●	0000	0000	000
A twisted leading	a torm conjectu	**	

A twisted leading term conjecture

There seems to be a barrier to a leading term conjecture for $L(A, \chi, s)$.

0000	0000	0000	000
Δ twisted leading	og term conjectu	ro	

There seems to be a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
000●	0000	0000	
A twisted leadin	g term conjectu	re	

There seems to be a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$. Then

$$\operatorname{Reg}(A_i/K) = \operatorname{Tam}(A_i/K) = \operatorname{III}(A_i/K) = \operatorname{tor}(A_i/K) = 1,$$

for $K = \mathbb{Q}$ and $K = \mathbb{Q}(\zeta_7)^+$, but $\mathcal{L}(A_1, \chi) = \zeta_3^2$ and $\mathcal{L}(A_2, \chi) = -\zeta_3^2$.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
000●	0000		000
A twisted leadin	g term conjectu	re	

There seems to be a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$. Then

$$\operatorname{Reg}(A_i/K) = \operatorname{Tam}(A_i/K) = \operatorname{III}(A_i/K) = \operatorname{tor}(A_i/K) = 1,$$

for $K = \mathbb{Q}$ and $K = \mathbb{Q}(\zeta_7)^+$, but $\mathcal{L}(A_1, \chi) = \zeta_3^2$ and $\mathcal{L}(A_2, \chi) = -\zeta_3^2$.

Theorem (Dokchitser–Evans–Wiersema 2021)

Assume there is a conjecture $\mathcal{L}(A, \chi) = BSD(A, \chi)$ for a semistable elliptic curve A over \mathbb{Q} . If $\chi \in Irr(D_{pq})$ with $p \equiv q \equiv 3 \mod 4$, then $\langle \chi, A(L)_{\mathbb{C}} \rangle > 0$ if the order of vanishing of $L(A, \chi, s)$ at s = 1 is odd.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	●000	0000	000
Algebraic L	-values		

$$\mathcal{L}(A) := rac{L^*(A,1)}{\Omega(A) \cdot \operatorname{Reg}(A)}.$$

The BSD formula 0000	Algebraic L-values	A twisted BSD formula	Global function fields 000
Algebraic L	-values		

$$\mathcal{L}(A) := rac{L^*(A,1)}{\Omega(A) \cdot \operatorname{Reg}(A)}.$$

If $L(A, 1) \neq 0$, then

$$\mathcal{L}(A) = rac{L(A,1)}{\Omega(A)}.$$

The BSD formula 0000	Algebraic L-values ●000	A twisted BSD formula	Global function fields
Algebraic L	-values		

$$\mathcal{L}(A) := rac{L^*(A,1)}{\Omega(A) \cdot \operatorname{Reg}(A)}$$

If $L(A, 1) \neq 0$, then

$$\mathcal{L}(A) = \frac{\mathcal{L}(A,1)}{\Omega(A)}.$$

If A is an elliptic curve over \mathbb{Q} , then modularity gives

$$-(1+p-a_p(A))\cdot L(f_A,1)=\sum_{n=1}^{p-1}\int_0^{\frac{n}{p}}f_A(q)\mathrm{d}q.$$

which is a rational multiple of $\Omega(A)$.

The BSD formula 0000	Algebraic L-values ●000	A twisted BSD formula	Global function fields
Algebraic L	-values		

$$\mathcal{L}(A) := rac{L^*(A,1)}{\Omega(A) \cdot \operatorname{Reg}(A)}.$$

If $L(A, 1) \neq 0$, then

$$\mathcal{L}(A) = rac{L(A,1)}{\Omega(A)}.$$

If A is an elliptic curve over \mathbb{Q} , then modularity gives

$$-(1+p-a_p(A))\cdot L(f_A,1)=\sum_{n=1}^{p-1}\int_0^{\frac{n}{p}}f_A(q)\mathrm{d}q,$$

which is a rational multiple of $\Omega(A)$.

In general, the algebraicity of $\mathcal{L}(A)$ is Deligne's period conjecture.

The BSD formula 0000	Algebraic L-values O●OO	A twisted BSD formula	Global function fields
Deligne's period	d conjecture		

A motive M over a global field K is a collection of K-vector space realisations $H_B(M)$, $H_{dR}(M)$, $H_{\lambda}(M)$, and $H_p(M)$, equipped with comparison isomorphisms between their complexifications.

0000	0000	0000	000
The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields

Deligne's period conjecture

A motive M over a global field K is a collection of K-vector space realisations $H_B(M)$, $H_{dR}(M)$, $H_{\lambda}(M)$, and $H_p(M)$, equipped with comparison isomorphisms between their complexifications.

Conjecture (Deligne)

Let *M* be a critical motive over a number field *K* such that $L(M, 0) \neq 0$. Then there is some $x \in K^{\times}$ such that

$$L(M,0) = x^{\sigma} \cdot c^+(M), \qquad \sigma \in \operatorname{Gal}(K/\mathbb{Q}).$$

Here, $c^+(M)$ is the determinant of the period map

 $H_B(M)^+ \otimes \mathbb{C} \hookrightarrow H_B(M) \otimes \mathbb{C} \xrightarrow{\sim} H_{dR}(M) \otimes \mathbb{C} \twoheadrightarrow H_{dR}(M)^+ \otimes \mathbb{C}.$

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	O●OO	0000	
Deligne's pe	riod conjecture		

A motive M over a global field K is a collection of K-vector space realisations $H_B(M)$, $H_{dR}(M)$, $H_{\lambda}(M)$, and $H_p(M)$, equipped with comparison isomorphisms between their complexifications.

Conjecture (Deligne)

Let *M* be a critical motive over a number field *K* such that $L(M, 0) \neq 0$. Then there is some $x \in K^{\times}$ such that

$$L(M,0) = x^{\sigma} \cdot c^+(M), \qquad \sigma \in \operatorname{Gal}(K/\mathbb{Q}).$$

Here, $c^+(M)$ is the determinant of the period map

$$H_B(M)^+\otimes \mathbb{C} \hookrightarrow H_B(M)\otimes \mathbb{C} \xrightarrow{\sim} H_{dR}(M)\otimes \mathbb{C} \twoheadrightarrow H_{dR}(M)^+\otimes \mathbb{C}.$$

If $M = h^1(A)(1)$, then this says that there is some $x \in \mathbb{Q}^{\times}$ such that

$$L(A,1) = x \cdot \Omega(A).$$

イロト 不得 トイヨト イヨト 三日

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	○○●○	0000	000
Algebraic tv	visted L-values		

Define the algebraic twisted L-value of (A, χ) by

$$\mathcal{L}(A,\chi) := rac{L^*(A,\chi,1)}{\Omega(A,\chi) \cdot \operatorname{Reg}(A,\chi)}.$$

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	○○●○	0000	
Algebraic twi	sted L-values		

Define the algebraic twisted L-value of (A, χ) by

$$\mathcal{L}(A,\chi) := rac{L^*(A,\chi,1)}{\Omega(A,\chi) \cdot \operatorname{Reg}(A,\chi)}.$$

Define the twisted period of (A, χ) by

$$\Omega(A,\chi) := \frac{\Omega_+(A)^{\dim^+(\chi)} \cdot \Omega_-(A)^{\dim^-(\chi)} \cdot w_{\chi}^{\dim(A)}}{\sqrt{N_{\chi}}^{\dim(A)}}.$$

0000	0000	0000	000
Algebraic twist	ed L-values		

Define the algebraic twisted L-value of (A, χ) by

$$\mathcal{L}(A,\chi) := \frac{L^*(A,\chi,1)}{\Omega(A,\chi) \cdot \operatorname{Reg}(A,\chi)}.$$

Define the twisted period of (A, χ) by

$$\Omega(A,\chi) := \frac{\Omega_+(A)^{\dim^+(\chi)} \cdot \Omega_-(A)^{\dim^-(\chi)} \cdot w_{\chi}^{\dim(A)}}{\sqrt{N_{\chi}}^{\dim(A)}}.$$

Define the twisted regulator of (A, $\chi)$ by

$$\operatorname{Reg}(A,\chi) := \operatorname{det}(\langle e_i(\chi), e_j(\widehat{\chi}) \rangle)_{i,j},$$

where $\{e_i(\chi)\}_i$ is a basis of

$$A(L)[\chi] := \operatorname{Hom}_{\mathbb{Z}[\chi]}(\rho_{\chi}, A(L) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi])^{\operatorname{Gal}(L/K)}$$

X]) 、 , , , , . < ロ > < @ > < 言 > < 言 > 三 = . 三 =

	BSD	formul	
000	00		

A twisted BSD formula

Global function fields

Algebraicity of twisted L-values

If $L(A, \chi, 1) \neq 0$, then $\operatorname{Reg}(A, \chi) = 1$. Then Deligne's period conjecture for $M = h^1(A)(1) \otimes \chi$ says that there is some $x \in \mathbb{Q}(\chi)^{\times}$ such that

 $L(A, \chi^{\sigma}, 1) = x^{\sigma} \cdot \Omega(A, \chi^{\sigma}), \qquad \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$

The	BSD	formul	
000	oc		

A twisted BSD formula

Global function fields

Algebraicity of twisted L-values

If $L(A, \chi, 1) \neq 0$, then $\operatorname{Reg}(A, \chi) = 1$. Then Deligne's period conjecture for $M = h^1(A)(1) \otimes \chi$ says that there is some $x \in \mathbb{Q}(\chi)^{\times}$ such that

 $L(A, \chi^{\sigma}, 1) = x^{\sigma} \cdot \Omega(A, \chi^{\sigma}), \qquad \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$

Thus $\mathcal{L}(A, \chi^{\sigma}) = \mathcal{L}(A, \chi)^{\sigma}$ for all $\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q})$.

	BSD	formul	
000	00		

A twisted BSD formula

Global function fields

Algebraicity of twisted L-values

If $L(A, \chi, 1) \neq 0$, then $\operatorname{Reg}(A, \chi) = 1$. Then Deligne's period conjecture for $M = h^1(A)(1) \otimes \chi$ says that there is some $x \in \mathbb{Q}(\chi)^{\times}$ such that

 $L(A, \chi^{\sigma}, 1) = x^{\sigma} \cdot \Omega(A, \chi^{\sigma}), \qquad \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$

Thus $\mathcal{L}(A, \chi^{\sigma}) = \mathcal{L}(A, \chi)^{\sigma}$ for all $\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q})$.

Theorem (Bouganis–Dokchitser 2007, Wiersema–Wuthrich 2021)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G, and let A be an elliptic curve over \mathbb{Q} such that $L(A, \chi, 1) \neq 0$. Then for any non-trivial $\chi \in Irr(G)$ such that $(N_{\chi}, N_A) = 1$,

 $\mathcal{L}(A, \chi^{\sigma}) = \mathcal{L}(A, \chi)^{\sigma}, \qquad \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$

Furthermore, $\mathcal{L}(A, \chi) \in \mathbb{Z}[\chi]$ assuming that $c_1(A) = 1$.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の Q (や 27 / 56

000	00	

A twisted BSD formula

Global function fields

Algebraicity of twisted L-values

If $L(A, \chi, 1) \neq 0$, then $\operatorname{Reg}(A, \chi) = 1$. Then Deligne's period conjecture for $M = h^1(A)(1) \otimes \chi$ says that there is some $x \in \mathbb{Q}(\chi)^{\times}$ such that

 $L(A, \chi^{\sigma}, 1) = x^{\sigma} \cdot \Omega(A, \chi^{\sigma}), \qquad \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$

Thus $\mathcal{L}(A, \chi^{\sigma}) = \mathcal{L}(A, \chi)^{\sigma}$ for all $\sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q})$.

Theorem (Bouganis–Dokchitser 2007, Wiersema–Wuthrich 2021)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G, and let A be an elliptic curve over \mathbb{Q} such that $L(A, \chi, 1) \neq 0$. Then for any non-trivial $\chi \in Irr(G)$ such that $(N_{\chi}, N_A) = 1$,

 $\mathcal{L}(A, \chi^{\sigma}) = \mathcal{L}(A, \chi)^{\sigma}, \qquad \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$

Furthermore, $\mathcal{L}(A, \chi) \in \mathbb{Z}[\chi]$ assuming that $c_1(A) = 1$.

Castillo–Evans–Wiersema 2023 gave numerical evidence for A = Jac(C).

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	●000	
Ideals of twisted	L-values		

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	•000	
Ideals of twister			

Theorem (Burns-Castillo 2019)

Let L be a finite Galois extension of \mathbb{Q} with Galois group G, and let A be an abelian variety over \mathbb{Q} such that $(\Delta_L, N_A) = 1$. Assume that the refined Birch–Swinnerton-Dyer conjecture holds for (A, L, \mathbb{Q}) . Let $\chi \in Irr(G)$, and let λ be a prime of $\mathbb{Q}(\chi)$ not dividing

2, |G|, Δ_L , N_A , $\operatorname{Tam}(A)$, $\#\operatorname{tor}(A/L)$, $\#\operatorname{tor}(\widehat{A}/L)$.

0000	OOOO	● 000	
Ideals of tw	isted Lyplues		

Theorem (Burns–Castillo 2019)

Let L be a finite Galois extension of \mathbb{Q} with Galois group G, and let A be an abelian variety over \mathbb{Q} such that $(\Delta_L, N_A) = 1$. Assume that the refined Birch–Swinnerton-Dyer conjecture holds for (A, L, \mathbb{Q}) . Let $\chi \in Irr(G)$, and let λ be a prime of $\mathbb{Q}(\chi)$ not dividing

2, |G|, Δ_L , N_A , $\operatorname{Tam}(A)$, $\#\operatorname{tor}(A/L)$, $\#\operatorname{tor}(\widehat{A}/L)$.

Then there is an equality of fractional $\mathbb{Z}[\chi]_{\lambda}\text{-ideals}$

$$\mathcal{L}(A,\chi)\cdot\mathbb{Z}[\chi]_{\lambda}=rac{\operatorname{char}_{\lambda}(\operatorname{III}(A/L,\chi))}{\prod_{\nu\mid\Delta_{L}}L_{\nu}(A,\chi,1)}.$$

Here, $\operatorname{III}(A/L, \chi) := \operatorname{Hom}_{\mathbb{Z}[\chi]}(\rho_{\chi}, \operatorname{III}(A/L) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi])^{\operatorname{Gal}(L/K)}.$

The BSD formula 0000	Algebraic L-values	A twisted BSD formula ○●○○	Global function fields
Norms of ty	visted L_values		

The norm of $\mathcal{L}(A, \chi)$ has a conjectural expression when $\mathcal{L}(A, \chi, 1) \neq 0$.

The BSD formula 0000			Algebraic L-valı 0000	A twisted BSD formula O●OO	Global function fields 000
	~	_			

Norms of twisted L-values

The norm of $\mathcal{L}(A, \chi)$ has a conjectural expression when $\mathcal{L}(A, \chi, 1) \neq 0$.

Theorem (Dokchitser–Evans–Wiersema 2021)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G, and let A be an elliptic curve over \mathbb{Q} such that $c_1(A) = 1$. Assume that the Birch–Swinnerton-Dyer conjecture holds for (A, L) and (A, \mathbb{Q}) . Let $\chi \in Irr(G)$ have odd prime conductor $p \nmid N_A$ and odd prime order $q \nmid \#A(\mathbb{F}_p) \cdot \mathcal{L}(A)$ such that $L(A, \chi, 1) \neq 0$.

The BSD formula 0000		Algebraic L-valı 0000	A twisted BSD formula O●OO	Global function fields
	~			

Norms of twisted L-values

The norm of $\mathcal{L}(A, \chi)$ has a conjectural expression when $\mathcal{L}(A, \chi, 1) \neq 0$.

Theorem (Dokchitser–Evans–Wiersema 2021)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G, and let A be an elliptic curve over \mathbb{Q} such that $c_1(A) = 1$. Assume that the Birch–Swinnerton-Dyer conjecture holds for (A, L) and (A, \mathbb{Q}) . Let $\chi \in Irr(G)$ have odd prime conductor $p \nmid N_A$ and odd prime order $q \nmid \#A(\mathbb{F}_p) \cdot \mathcal{L}(A)$ such that $L(A, \chi, 1) \neq 0$. Then

$$\operatorname{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_q)^+}(\mathcal{L}(A,\chi)\cdot\zeta)=B(K),$$

where $\zeta := \chi(N_A)^{(q-1)/2}$ and K is the subfield of $\mathbb{Q}(\zeta_p)$ cut out by χ .

Here,

$$B(\mathcal{K}) := \frac{\# \mathrm{tor}(\mathcal{A})}{\# \mathrm{tor}(\mathcal{A}/\mathcal{K})} \sqrt{\frac{\mathrm{Tam}(\mathcal{A}/\mathcal{K}) \cdot \# \mathrm{III}(\mathcal{A}/\mathcal{K})}{\mathrm{Tam}(\mathcal{A}) \cdot \# \mathrm{III}(\mathcal{A})}}.$$

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	OO●O	000
Values of twiste	d L-values		

The value of $\mathcal{L}(A, \chi)$ can be predicted precisely when χ is cubic.

The BSD formula		Algebraic L-values	A twisted BSD formula	Global function fields
0000		0000	00●0	000
N / 1	e			

Values of twisted L-values

The value of $\mathcal{L}(A, \chi)$ can be predicted precisely when χ is cubic.

Theorem (A. 2023)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G, and let A be an elliptic curve over \mathbb{Q} such that $c_1(A) = 1$. Assume that the Birch–Swinnerton-Dyer conjecture holds for (A, L) and (A, \mathbb{Q}) . Let $\chi \in \operatorname{Irr}(G)$ have odd prime conductor $p \nmid N_A$ and order $3 \nmid \#A(\mathbb{F}_p) \cdot \mathcal{L}(A)$ such that $L(A, \chi, 1) \neq 0$.

The BSD formula 0000		Algebraic L-valu 0000	A twisted BSD formula 00●0	Global function fields
	~ .			

Values of twisted L-values

The value of $\mathcal{L}(A, \chi)$ can be predicted precisely when χ is cubic.

Theorem (A. 2023)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G, and let A be an elliptic curve over \mathbb{Q} such that $c_1(A) = 1$. Assume that the Birch–Swinnerton-Dyer conjecture holds for (A, L) and (A, \mathbb{Q}) . Let $\chi \in \operatorname{Irr}(G)$ have odd prime conductor $p \nmid N_A$ and order $3 \nmid \#A(\mathbb{F}_p) \cdot \mathcal{L}(A)$ such that $L(A, \chi, 1) \neq 0$. Then

$$\mathcal{L}(A,\chi)\cdot\zeta = \begin{cases} B(K) & \text{if } \#A(\mathbb{F}_p)\cdot\mathcal{L}(A)\cdot B(K)^{-1} \equiv 2 \mod 3\\ -B(K) & \text{if } \#A(\mathbb{F}_p)\cdot\mathcal{L}(A)\cdot B(K)^{-1} \equiv 1 \mod 3 \end{cases}$$

where $\zeta := \chi(N_A)^{(q-1)/2}$.

The BSD formula 0000		Algebraic L-valu 0000	A twisted BSD formula 00●0	Global function fields
	~ .			

Values of twisted L-values

The value of $\mathcal{L}(A, \chi)$ can be predicted precisely when χ is cubic.

Theorem (A. 2023)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G, and let A be an elliptic curve over \mathbb{Q} such that $c_1(A) = 1$. Assume that the Birch–Swinnerton-Dyer conjecture holds for (A, L) and (A, \mathbb{Q}) . Let $\chi \in \operatorname{Irr}(G)$ have odd prime conductor $p \nmid N_A$ and order $3 \nmid \#A(\mathbb{F}_p) \cdot \mathcal{L}(A)$ such that $L(A, \chi, 1) \neq 0$. Then

$$\mathcal{L}(A,\chi)\cdot\zeta = \begin{cases} B(K) & \text{if } \#A(\mathbb{F}_p)\cdot\mathcal{L}(A)\cdot B(K)^{-1} \equiv 2 \mod 3\\ -B(K) & \text{if } \#A(\mathbb{F}_p)\cdot\mathcal{L}(A)\cdot B(K)^{-1} \equiv 1 \mod 3 \end{cases}$$

where $\zeta := \chi(N_A)^{(q-1)/2}$.

This follows from $-\#A(\mathbb{F}_p) \cdot \mathcal{L}(A) \equiv \mathcal{L}(A, \chi) \mod (1 - \zeta_q)$, which arises from a congruence in Manin's formalism for classical modular symbols.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000		000●	000
Example of twis	ted L-values		

This explains a barrier to a leading term conjecture for $L(A, \chi, s)$.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	000●	000
=			

Example of twisted L-values

This explains a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$. Then

$$\mathcal{L}(\mathcal{A}_1,\chi) = \zeta_3^2, \qquad \mathcal{L}(\mathcal{A}_2,\chi) = -\zeta_3^2.$$

• □ > • □ > • Ξ > •

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	000●	

Example of twisted L-values

This explains a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$. Then

$$\mathcal{L}(\mathcal{A}_1,\chi)=\zeta_3^2,\qquad \mathcal{L}(\mathcal{A}_2,\chi)=-\zeta_3^2.$$

Now Dokchitser-Evans-Wiersema 2021 says that

$$\mathcal{L}(A_i,\chi) = \pm \chi(1356)^2 = \pm \zeta_3^2.$$

(日)

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	000●	

Example of twisted L-values

This explains a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$. Then

$$\mathcal{L}(\mathcal{A}_1,\chi)=\zeta_3^2,\qquad \mathcal{L}(\mathcal{A}_2,\chi)=-\zeta_3^2.$$

Now Dokchitser-Evans-Wiersema 2021 says that

$$\mathcal{L}(A_i,\chi) = \pm \chi(1356)^2 = \pm \zeta_3^2.$$

On the other hand $\#A_1(\mathbb{F}_7) = 11$ and $\#A_2(\mathbb{F}_7) = 7$, so A. 2023 says that

$$\mathcal{L}(A_1, \chi) \equiv -\#A_1(\mathbb{F}_7) \equiv 1 \equiv \zeta_3^2 \mod (1 - \zeta_3),$$
$$\mathcal{L}(A_2, \chi) \equiv -\#A_2(\mathbb{F}_7) \equiv -1 \equiv -\zeta_3^2 \mod (1 - \zeta_3).$$

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	●00
Algebraic twiste	d L-values		

Now let A be an abelian variety over a global function field $K = \mathbb{F}_p(C)$.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	●00
Algebraic twiste	ed L-values		

Now let A be an abelian variety over a global function field $K = \mathbb{F}_p(C)$. By the Grothendieck–Lefschetz trace formula,

$$L(A, \chi, s) = \prod_{i=0}^{2} \det(1 - p^{-s} \cdot \phi_p \mid H^{i}_{\text{ét}, c}(\overline{C}, \mathcal{F}))^{(-1)^{i+1}},$$

where \mathcal{F} is the constructible sheaf on C given by the pushforward of the lisse sheaf $V_{\ell}(A) \otimes \rho_{\chi}$ defined over any unramified open subset of C.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000		●00
Algebraic twiste	ed L-values		

Now let A be an abelian variety over a global function field $K = \mathbb{F}_{p}(C)$. By the Grothendieck–Lefschetz trace formula,

$$L(A, \chi, s) = \prod_{i=0}^{2} \det(1 - p^{-s} \cdot \phi_p \mid H^{i}_{\text{ét}, c}(\overline{C}, \mathcal{F}))^{(-1)^{i+1}},$$

where \mathcal{F} is the constructible sheaf on C given by the pushforward of the lisse sheaf $V_{\ell}(A) \otimes \rho_{\chi}$ defined over any unramified open subset of C.

Since $L(A, \chi, s)$ is already algebraic, define $\mathcal{L}(A, \chi) := L^*(A, \chi, 1)$.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	●00
Algebraic tw	isted L-values		

Now let A be an abelian variety over a global function field $K = \mathbb{F}_p(C)$. By the Grothendieck–Lefschetz trace formula,

$$L(A, \chi, s) = \prod_{i=0}^{2} \det(1 - p^{-s} \cdot \phi_p \mid H^{i}_{\text{ét}, c}(\overline{C}, \mathcal{F}))^{(-1)^{i+1}},$$

where \mathcal{F} is the constructible sheaf on C given by the pushforward of the lisse sheaf $V_{\ell}(A) \otimes \rho_{\chi}$ defined over any unramified open subset of C.

Since $L(A, \chi, s)$ is already algebraic, define $\mathcal{L}(A, \chi) := L^*(A, \chi, 1)$.

Theorem (A. 2024)

Let L be a finite Galois extension of $K = \mathbb{F}_p(C)$ with Galois group G, and let A be an abelian variety over K. Then for any $\chi \in Irr(G)$,

 $\mathcal{L}(A, \chi^{\sigma}) = \mathcal{L}(A, \chi)^{\sigma}, \qquad \sigma \in \operatorname{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields O●O
Ideals of twisted	L-values		

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	○●○
Ideals of twisted	L-values		

Theorem (Kim–Tan–Trihan–Tsoi 2024)

Let L be a finite Galois extension of $K = \mathbb{F}_p(C)$ with Galois group G, and let A be an abelian variety over K. Assume that $\mathrm{III}(A/L)$ is finite. Let $\chi \in \mathrm{Irr}(G)$, and let λ be a prime of $\mathbb{Q}(\chi)$ not dividing

p, |G|, $\operatorname{Tam}(A)$, $\#\operatorname{tor}(A/L)$, $\#\operatorname{tor}(\widehat{A}/L)$.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	O●O
Ideals of twisted	d L-values		

Theorem (Kim–Tan–Trihan–Tsoi 2024)

Let L be a finite Galois extension of $K = \mathbb{F}_p(C)$ with Galois group G, and let A be an abelian variety over K. Assume that $\mathrm{III}(A/L)$ is finite. Let $\chi \in \mathrm{Irr}(G)$, and let λ be a prime of $\mathbb{Q}(\chi)$ not dividing

p, |G|, $\operatorname{Tam}(A)$, $\#\operatorname{tor}(A/L)$, $\#\operatorname{tor}(\widehat{A}/L)$.

Then there is an equality of fractional $\mathbb{Z}[\chi]_{\lambda}$ -ideals

$$\mathcal{L}(A,\chi)\cdot\mathbb{Z}[\chi]_{\lambda}=\frac{\operatorname{Reg}_{\lambda}(A,\chi)\cdot\operatorname{char}_{\lambda}(\operatorname{III}_{\lambda}(A/L,\chi))}{\prod_{\nu\mid\Delta_{L}}L_{\nu}(A,\chi,1)}.$$

This involves the $\mathbb{Z}[\chi]_{\lambda}$ -modules $\operatorname{Reg}_{\lambda}(A, \chi)$ and $\operatorname{III}_{\lambda}(A/L, \chi)$, which are necessary to generalise the statement to primes λ of $\mathbb{Q}(\chi)$ dividing p.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	00●
Values of twiste	ed L-values		

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000		○○●
Values of twiste	d L-values		

I am currently working on this.

The BSD formula 0000	Algebraic L-values	A twisted BSD formula	Global function fields 00●
Values of twiste	d L-values		

I am currently working on this.

If A is an elliptic curve over \mathbb{Q} , then modularity gives a congruence of classical modular symbols, which proves A. 2023.

The BSD formula 0000	Algebraic L-values 0000	A twisted BSD formula	Global function fields
Values of twiste	d L-values		

I am currently working on this.

If A is an elliptic curve over \mathbb{Q} , then modularity gives a congruence of classical modular symbols, which proves A. 2023. In contrast, there are modularity results for abelian varieties over $\mathcal{K} = \mathbb{F}_p(C)$, due to the global Langlands conjectures proven by Drinfeld 1989 and Lafforgue 1998.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	
Values of twiste	d L-values		

I am currently working on this.

If A is an elliptic curve over \mathbb{Q} , then modularity gives a congruence of classical modular symbols, which proves A. 2023. In contrast, there are modularity results for abelian varieties over $\mathcal{K} = \mathbb{F}_p(C)$, due to the global Langlands conjectures proven by Drinfeld 1989 and Lafforgue 1998.

On the other hand, $L(A, \chi, s)$ is already a rational function in p^{-s} with coefficients in $\mathbb{Q}(\chi)$, which can be determined by investigating the action of ϕ_p on $H^i_{\text{ét},c}(\overline{C}, \mathcal{F})$.

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000	0000	○○●
Values of twiste	d L-values		

I am currently working on this.

If A is an elliptic curve over \mathbb{Q} , then modularity gives a congruence of classical modular symbols, which proves A. 2023. In contrast, there are modularity results for abelian varieties over $\mathcal{K} = \mathbb{F}_p(C)$, due to the global Langlands conjectures proven by Drinfeld 1989 and Lafforgue 1998.

On the other hand, $L(A, \chi, s)$ is already a rational function in p^{-s} with coefficients in $\mathbb{Q}(\chi)$, which can be determined by investigating the action of ϕ_p on $H^i_{\text{ét},c}(\overline{C}, \mathcal{F})$. In fact, $L(A, \chi, s)$ is a polynomial in p^{-s} with coefficients in $\mathbb{Z}[\chi]$ under certain conditions on (A, χ) .

The BSD formula	Algebraic L-values	A twisted BSD formula	Global function fields
0000	0000		00●
Values of twiste	d L-values		

I am currently working on this.

If A is an elliptic curve over \mathbb{Q} , then modularity gives a congruence of classical modular symbols, which proves A. 2023. In contrast, there are modularity results for abelian varieties over $\mathcal{K} = \mathbb{F}_p(C)$, due to the global Langlands conjectures proven by Drinfeld 1989 and Lafforgue 1998.

On the other hand, $L(A, \chi, s)$ is already a rational function in p^{-s} with coefficients in $\mathbb{Q}(\chi)$, which can be determined by investigating the action of ϕ_p on $H^i_{\text{ét,c}}(\overline{C}, \mathcal{F})$. In fact, $L(A, \chi, s)$ is a polynomial in p^{-s} with coefficients in $\mathbb{Z}[\chi]$ under certain conditions on (A, χ) .

Can we understand the action of ϕ_p from the geometry of (A, χ) ?