

Twisted elliptic L-values over global fields

Algebraic Number Theory

David Kurniadi Angdinata

London School of Geometry and Number Theory

Thursday, 5 September 2024

Twisted L-series

Let A be an abelian variety over a global field K , and let χ be a character of a finite group G . The **Artin–Hasse–Weil L-series** of (A, χ) is

$$L(A, \chi, s) := \prod_{\mathfrak{p}} \frac{1}{L_{\mathfrak{p}}(\rho_{A, \ell}^{\vee} \otimes \chi, q_{\mathfrak{p}}^{-s})},$$

where $L_{\mathfrak{p}}(\rho, T) := \det(1 - T \cdot \phi_{\mathfrak{p}} \mid \rho^{I_{\mathfrak{p}}})$.

If $\chi = 1$, then $L(A, \chi, s) = L(A, s)$ is the **Hasse–Weil L-series** of A .

If L is a finite Galois extension of K with Galois group G , then

$$L(A/L, s) = L(A, \text{Ind}_{\{1\}}^G 1, s) = \prod_{\chi} L(A, \chi, s),$$

where χ runs over all the irreducible characters $\text{Irr}(G)$ of G .

The Birch–Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer)

The order of vanishing of $L(A, s)$ at $s = 1$ is equal to $\text{rk}(A)$. Furthermore, the leading term of $L(A, s)$ at $s = 1$ is equal to

$$L^*(A, 1) = \frac{\Omega(A) \cdot \text{Reg}(A) \cdot \text{Tam}(A) \cdot \#\text{III}(A)}{\sqrt{|\Delta_K|} \cdot \#\text{tor}(A) \cdot \#\text{tor}(\widehat{A})}.$$

This is known in some cases when A is an elliptic curve.

- If $K = \mathbb{Q}$ and the order of vanishing is at most 1, then the rank conjecture is proven by Gross–Zagier 1986 and Kolyvagin 1988, and much of the ℓ -part of the leading term conjecture is proven by Keller–Yin 2024 and Burungale–Castella–Skinner 2024.
- If $K = \mathbb{F}_p(C)$, then Kato–Trihan 2003 proved that the rank conjecture is equivalent to the finiteness of $\text{III}(A)[\ell^\infty]$ for some prime $\ell \neq p$ and implies the leading term conjecture.

The Deligne–Gross conjecture

Conjecture (Deligne–Gross)

The order of vanishing of $L(A, \chi, s)$ at $s = 1$ is equal to $\langle \chi, A(L)_{\mathbb{C}} \rangle$.

This is known in some cases when A is an elliptic curve over \mathbb{Q} .

- If A has no potential complex multiplication, then Kato 2004 proved this for one-dimensional Artin representations.
- If the order of vanishing is 0, then Bertolini–Darmon–Rotger 2015 proved this for odd irreducible two-dimensional Artin representations.
- If the order of vanishing is 0, then Darmon–Rotger 2017 proved this for certain self-dual Artin representations of dimension at most 4.

Theorem (Bisatt–Dokchitser 2018)

Assume the Deligne–Gross conjecture. If $\chi \in \text{Irr}(C_q \rtimes C_{p^n})$ with $q \not\equiv 1 \pmod{p^n}$, then p divides the order of vanishing of $L(A, \chi, s)$ at $s = 1$.

A twisted leading term conjecture

There seems to be a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$. Then

$$\text{Reg}(A_i/K) = \text{Tam}(A_i/K) = \text{III}(A_i/K) = \text{tor}(A_i/K) = 1,$$

for $K = \mathbb{Q}$ and $K = \mathbb{Q}(\zeta_7)^+$, but $\mathcal{L}(A_1, \chi) = \zeta_3^2$ and $\mathcal{L}(A_2, \chi) = -\zeta_3^2$.

Theorem (Dokchitser–Evans–Wiersema 2021)

Assume there is a conjecture $\mathcal{L}(A, \chi) = \text{BSD}(A, \chi)$ for a semistable elliptic curve A over \mathbb{Q} . If $\chi \in \text{Irr}(D_{pq})$ with $p \equiv q \equiv 3 \pmod{4}$, then $\langle \chi, A(L)_{\mathbb{C}} \rangle > 0$ if the order of vanishing of $L(A, \chi, s)$ at $s = 1$ is odd.

Algebraic L-values

Define the **algebraic L-value** of A by

$$\mathcal{L}(A) := \frac{L^*(A, 1)}{\Omega(A) \cdot \text{Reg}(A)}.$$

If $L(A, 1) \neq 0$, then

$$\mathcal{L}(A) = \frac{L(A, 1)}{\Omega(A)}.$$

If A is an elliptic curve over \mathbb{Q} , then modularity gives

$$-(1 + p - a_p(A)) \cdot L(f_A, 1) = \sum_{n=1}^{p-1} \int_0^{\frac{n}{p}} f_A(q) dq,$$

which is a rational multiple of $\Omega(A)$.

In general, the algebraicity of $\mathcal{L}(A)$ is Deligne's period conjecture.

Deligne's period conjecture

A motive M over a global field K is a collection of K -vector space realisations $H_B(M)$, $H_{dR}(M)$, $H_\lambda(M)$, and $H_p(M)$, equipped with comparison isomorphisms between their complexifications.

Conjecture (Deligne)

Let M be a critical motive over a number field K such that $L(M, 0) \neq 0$. Then there is some $x \in K^\times$ such that

$$L(M, 0) = x^\sigma \cdot c^+(M), \quad \sigma \in \text{Gal}(K/\mathbb{Q}).$$

Here, $c^+(M)$ is the determinant of the period map

$$H_B(M)^+ \otimes \mathbb{C} \hookrightarrow H_B(M) \otimes \mathbb{C} \xrightarrow{\sim} H_{dR}(M) \otimes \mathbb{C} \twoheadrightarrow H_{dR}(M)^+ \otimes \mathbb{C}.$$

If $M = h^1(A)(1)$, then this says that there is some $x \in \mathbb{Q}^\times$ such that

$$L(A, 1) = x \cdot \Omega(A).$$

Algebraic twisted L-values

Define the **algebraic twisted L-value** of (A, χ) by

$$\mathcal{L}(A, \chi) := \frac{L^*(A, \chi, 1)}{\Omega(A, \chi) \cdot \text{Reg}(A, \chi)}.$$

Define the twisted period of (A, χ) by

$$\Omega(A, \chi) := \frac{\Omega_+(A)^{\dim^+(\chi)} \cdot \Omega_-(A)^{\dim^-(\chi)} \cdot w_\chi^{\dim(A)}}{\sqrt{N_\chi^{\dim(A)}}}.$$

Define the twisted regulator of (A, χ) by

$$\text{Reg}(A, \chi) := \det(\langle e_i(\chi), e_j(\widehat{\chi}) \rangle)_{i,j},$$

where $\{e_i(\chi)\}_i$ is a basis of

$$A(L)[\chi] := \text{Hom}_{\mathbb{Z}[\chi]}(\rho_\chi, A(L) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi])^{\text{Gal}(L/K)}.$$

Algebraicity of twisted L-values

If $L(A, \chi, 1) \neq 0$, then $\text{Reg}(A, \chi) = 1$. Then Deligne's period conjecture for $M = h^1(A)(1) \otimes \chi$ says that there is some $x \in \mathbb{Q}(\chi)^\times$ such that

$$L(A, \chi^\sigma, 1) = x^\sigma \cdot \Omega(A, \chi^\sigma), \quad \sigma \in \text{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$$

Thus $\mathcal{L}(A, \chi^\sigma) = \mathcal{L}(A, \chi)^\sigma$ for all $\sigma \in \text{Gal}(\mathbb{Q}(\chi)/\mathbb{Q})$.

Theorem (Bouganis–Dokchitser 2007, Wiersema–Wuthrich 2021)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G , and let A be an elliptic curve over \mathbb{Q} such that $L(A, \chi, 1) \neq 0$. Then for any non-trivial $\chi \in \text{Irr}(G)$ such that $(N_\chi, N_A) = 1$,

$$\mathcal{L}(A, \chi^\sigma) = \mathcal{L}(A, \chi)^\sigma, \quad \sigma \in \text{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$$

Furthermore, $\mathcal{L}(A, \chi) \in \mathbb{Z}[\chi]$ assuming that $c_1(A) = 1$.

Castillo–Evans–Wiersema 2023 gave numerical evidence for $A = \text{Jac}(C)$.

Ideals of twisted L-values

The ideal generated by $\mathcal{L}(A, \chi)$ has a conjectural twisted BSD formula.

Theorem (Burns–Castillo 2019)

Let L be a finite Galois extension of \mathbb{Q} with Galois group G , and let A be an abelian variety over \mathbb{Q} such that $(\Delta_L, N_A) = 1$. Assume that the refined Birch–Swinnerton-Dyer conjecture holds for (A, L, \mathbb{Q}) . Let $\chi \in \text{Irr}(G)$, and let λ be a prime of $\mathbb{Q}(\chi)$ not dividing

$$2, \quad |G|, \quad \Delta_L, \quad N_A, \quad \text{Tam}(A), \quad \#\text{tor}(A/L), \quad \#\text{tor}(\widehat{A}/L).$$

Then there is an equality of fractional $\mathbb{Z}[\chi]_\lambda$ -ideals

$$\mathcal{L}(A, \chi) \cdot \mathbb{Z}[\chi]_\lambda = \frac{\text{char}_\lambda(\text{III}(A/L, \chi))}{\prod_{v|\Delta_L} L_v(A, \chi, 1)}.$$

Here, $\text{III}(A/L, \chi) := \text{Hom}_{\mathbb{Z}[\chi]}(\rho_\chi, \text{III}(A/L) \otimes_{\mathbb{Z}} \mathbb{Z}[\chi])^{\text{Gal}(L/K)}$.

Norms of twisted L-values

The norm of $\mathcal{L}(A, \chi)$ has a conjectural expression when $L(A, \chi, 1) \neq 0$.

Theorem (Dokchitser–Evans–Wiersema 2021)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G , and let A be an elliptic curve over \mathbb{Q} such that $c_1(A) = 1$. Assume that the Birch–Swinnerton-Dyer conjecture holds for (A, L) and (A, \mathbb{Q}) . Let $\chi \in \text{Irr}(G)$ have odd prime conductor $p \nmid N_A$ and odd prime order $q \nmid \#A(\mathbb{F}_p) \cdot \mathcal{L}(A)$ such that $L(A, \chi, 1) \neq 0$. Then

$$\text{Nm}_{\mathbb{Q}}^{\mathbb{Q}(\zeta_q)^+}(\mathcal{L}(A, \chi) \cdot \zeta) = B(K),$$

where $\zeta := \chi(N_A)^{(q-1)/2}$ and K is the subfield of $\mathbb{Q}(\zeta_p)$ cut out by χ .

Here,

$$B(K) := \frac{\#\text{tor}(A)}{\#\text{tor}(A/K)} \sqrt{\frac{\text{Tam}(A/K) \cdot \#\text{III}(A/K)}{\text{Tam}(A) \cdot \#\text{III}(A)}}.$$

Values of twisted L-values

The value of $\mathcal{L}(A, \chi)$ can be predicted precisely when χ is cubic.

Theorem (A. 2023)

Let L be a finite abelian extension of \mathbb{Q} with Galois group G , and let A be an elliptic curve over \mathbb{Q} such that $c_1(A) = 1$. Assume that the Birch–Swinnerton-Dyer conjecture holds for (A, L) and (A, \mathbb{Q}) . Let $\chi \in \text{Irr}(G)$ have odd prime conductor $p \nmid N_A$ and order $3 \nmid \#A(\mathbb{F}_p) \cdot \mathcal{L}(A)$ such that $L(A, \chi, 1) \neq 0$. Then

$$\mathcal{L}(A, \chi) \cdot \zeta = \begin{cases} B(K) & \text{if } \#A(\mathbb{F}_p) \cdot \mathcal{L}(A) \cdot B(K)^{-1} \equiv 2 \pmod{3}, \\ -B(K) & \text{if } \#A(\mathbb{F}_p) \cdot \mathcal{L}(A) \cdot B(K)^{-1} \equiv 1 \pmod{3}, \end{cases}$$

where $\zeta := \chi(N_A)^{(q-1)/2}$.

This follows from $-\#A(\mathbb{F}_p) \cdot \mathcal{L}(A) \equiv \mathcal{L}(A, \chi) \pmod{1 - \zeta_q}$, which arises from a congruence in Manin's formalism for modular symbols.

Example of twisted L-values

This explains a barrier to a leading term conjecture for $L(A, \chi, s)$.

Example

Let A_1 and A_2 be elliptic curves over \mathbb{Q} given by Cremona labels 1356d1 and 1356f1, and let χ be the primitive Dirichlet character of conductor 7 and order 3 given by $\chi(3) = \zeta_3^2$. Then

$$\mathcal{L}(A_1, \chi) = \zeta_3^2, \quad \mathcal{L}(A_2, \chi) = -\zeta_3^2.$$

Now Dokchitser–Evans–Wiersema 2021 says that

$$\mathcal{L}(A_i, \chi) = \pm \chi(1356)^2 = \pm \zeta_3^2.$$

On the other hand $\#A_1(\mathbb{F}_7) = 11$ and $\#A_2(\mathbb{F}_7) = 7$, so A. 2023 says that

$$\mathcal{L}(A_1, \chi) \equiv -\#A_1(\mathbb{F}_7) \equiv 1 \equiv \zeta_3^2 \pmod{1 - \zeta_3},$$

$$\mathcal{L}(A_2, \chi) \equiv -\#A_2(\mathbb{F}_7) \equiv -1 \equiv -\zeta_3^2 \pmod{1 - \zeta_3}.$$

Algebraic twisted L-values

Now let A be an abelian variety over a global function field $K = \mathbb{F}_p(C)$. By the Grothendieck–Lefschetz trace formula,

$$L(A, \chi, s) = \prod_{i=0}^2 \det(1 - p^{-s} \cdot \phi_p \mid H_{\text{ét}, c}^i(\overline{C}, \mathcal{F}))^{(-1)^{i+1}},$$

where \mathcal{F} is the constructible sheaf on C given by the pushforward of the lisse sheaf $V_\ell(A) \otimes \rho_\chi$ defined over any unramified open subset of C .

Since $L(A, \chi, s)$ is already algebraic, define $\mathcal{L}(A, \chi) := L^*(A, \chi, 1)$.

Theorem (A. 2024)

Let L be a finite Galois extension of $K = \mathbb{F}_p(C)$ with Galois group G , and let A be an abelian variety over K . Then for any $\chi \in \text{Irr}(G)$,

$$\mathcal{L}(A, \chi^\sigma) = \mathcal{L}(A, \chi)^\sigma, \quad \sigma \in \text{Gal}(\mathbb{Q}(\chi)/\mathbb{Q}).$$

Ideals of twisted L-values

The ideal generated by $\mathcal{L}(A, \chi)$ has a conjectural twisted BSD formula.

Theorem (Kim–Tan–Trihan–Tsoi 2024)

Let L be a finite Galois extension of $K = \mathbb{F}_p(C)$ with Galois group G , and let A be an abelian variety over K . Assume that $\text{III}(A/L)$ is finite. Let $\chi \in \text{Irr}(G)$, and let λ be a prime of $\mathbb{Q}(\chi)$ not dividing

$$p, \quad |G|, \quad \text{Tam}(A), \quad \#\text{tor}(A/L), \quad \#\text{tor}(\widehat{A}/L).$$

Then there is an equality of fractional $\mathbb{Z}[\chi]_\lambda$ -ideals

$$\mathcal{L}(A, \chi) \cdot \mathbb{Z}[\chi]_\lambda = \frac{\text{Reg}_\lambda(A, \chi) \cdot \text{char}_\lambda(\text{III}_\lambda(A/L, \chi))}{\prod_{v|\Delta_L} L_v(A, \chi, 1)}.$$

This involves the $\mathbb{Z}[\chi]_\lambda$ -modules $\text{Reg}_\lambda(A, \chi)$ and $\text{III}_\lambda(A/L, \chi)$, which are necessary to generalise the statement to primes λ of $\mathbb{Q}(\chi)$ dividing p .

Values of twisted L-values

Can we predict the value of $\mathcal{L}(A, \chi)$ analogous to A. 2023?

I am currently working on this.

If A is an elliptic curve over \mathbb{Q} , then modularity gives a congruence of classical modular symbols, which proves A. 2023. In contrast, there are modularity results for abelian varieties over $K = \mathbb{F}_p(C)$, due to the global Langlands conjectures proven by Drinfeld 1989 and Lafforgue 1998.

On the other hand, $L(A, \chi, s)$ is already a rational function in p^{-s} with coefficients in $\mathbb{Q}(\chi)$, which can be determined by investigating the action of ϕ_p on $H_{\text{ét}, c}^i(\bar{C}, \mathcal{F})$. In fact, $L(A, \chi, s)$ is a polynomial in p^{-s} with coefficients in $\mathbb{Z}[\chi]$ under certain conditions on (A, χ) .

Can we understand the action of ϕ_p from the geometry of (A, χ) ?