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From Gross–Zagier to Kolyvagin

Assumptions

▶ Elliptic curve E/Q with modular parameterisation ϕ : X0(N) ↠ E.

▶ Imaginary quadratic field K = Q(
√
−D) with Heegner condition: 2

p | N =⇒ p is split in K .

Consequences

▶ An ideal NK ⊴ OK such that OK/NK
∼= Z/N.

▶ A cyclic N-isogeny C/OK → C/N−1
K .

▶ A point x1 ∈ X0(N)(K 1) by CM theory.

▶ A Heegner point P1 := ϕ(x1) ∈ E (K 1).

▶ A basic Heegner point

PK :=
∑

σ∈Gal(K 1/K)

σ(P1) ∈ E (K ).

2assume End(E) ∼= Z and D ̸= 1, 3
3 / 22



From Gross–Zagier to Kolyvagin

Recall the Gross–Zagier formula.

Theorem (Gross–Zagier, 1986)
There is some c ̸= 0 such that L′(E/K , 1) = c · ĥ(PK ).

Corollary
If L′(E/K , 1) ̸= 0, then rkZ E (K ) ≥ 1.

Theorem (Kolyvagin, 1989)
If ĥ(PK ) ̸= 0, then E (K )/ tor = Z · 1

nPK .

Corollary
If L′(E/K , 1) ̸= 0, then rkZ E (K ) = 1.

This almost proves weak BSD for analytic rank ≤ 1!
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Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume ords=1 L(E/Q, s) ≤ 1. Then ords=1 L(E/Q, s) = rkZ E (Q).

Proof.
Consider the functional equation

Λ(E/Q, s) = ϵ · Λ(E/Q, 2− s).

Differentiating k times and evaluating at s = 1 gives

L(k)(E/Q, 1) = ϵ · (−1)k · L(k)(E/Q, 1).

Then

ords=1 L(E/Q, s) =

{
0 if ϵ = +,

1 if ϵ = −.

Consider cases for ϵ.
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Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume ords=1 L(E/Q, s) ≤ 1. Then ords=1 L(E/Q, s) = rkZ E (Q).

Proof (for ϵ = −).
Fact: There is Heegner K = Q(

√
−D) such that L(ED/Q, 1) ̸= 0. Then

ords=1 L(E/K , s) = ords=1 L(E/Q, s)︸ ︷︷ ︸
1

+ ords=1 L(ED/Q, s)︸ ︷︷ ︸
0

.

In particular

L′(E/K , 1) ̸= 0
G–Z
=⇒ ĥ(PK ) ̸= 0

K
=⇒ E (K )/ tor = Z · 1

nPK .

Fact: complex conjugation of K acts like −ϵ on E (K )/ tor.

Thus E (Q)/ tor = Z · 1
nPK , so rkZ E (Q) = 1.
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The main result

Theorem (Kolyvagin, 1989)
If ĥ(PK ) ̸= 0, then E (K )/ tor = Z · 1

nPK .

Theorem (main result 3)
Let ℓ ∈ N be an odd prime of good reduction such that

Gal(Q(E [ℓ])/Q) ∼= GL2(Fℓ), PK /∈ ℓE (K ).

Then Sel(K ,E [ℓ]) = Fℓ · δ(PK ).

Proof (of Kolyvagin).
For any ℓ ∈ N, there is a short exact sequence

0 → E (K )/ℓE (K )
δ−→ Sel(K ,E [ℓ]) → X(K ,E )[ℓ] → 0.

Choose any ℓ ∈ N such that K and Q(E [ℓ]) are linearly disjoint over Q.
Then E (K )[ℓ] = 0, so that dimFℓ

E (K )/ℓE (K ) = rkZ E (K ).

3Benedict Gross, 1991. Kolyvagin’s work on modular elliptic curves
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Selmer structures

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual Fℓ[Gal(L/K )]-module.

Example
Let M = E [ℓ].

▶ Fact: Galois equivariance of ℓ-Weil pairing implies M is non-scalar.

▶ Fact: surjective ℓ-adic representation implies M is simple.

By inflation-restriction, there is a short exact sequence

0 → H1(Gnr
v ,M Iv ) → H1(Kv ,M) → H1(Iv ,M)G

nr
v → 0.

Example
Let v ∤ ℓ have good reduction. Then there is a short exact sequence

0 → E (Kv )/ℓE (Kv )
δ−→ H1(Kv ,M) → H1(Kv ,E )[ℓ] → 0.
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Selmer structures

A Selmer structure on M is an assignment

v 7−→ H1
f (Kv ,M) ⊆ H1(Kv ,M),

such that H1
f (Kv ,M) = H1(Gnr

v ,M Iv ) for almost all places v of K .
Its singular quotient H1

s (Kv ,M) sits in

0 → H1
f (Kv ,M) → H1(Kv ,M)

(·)s−−→ H1
s (Kv ,M) → 0.

Example

▶ The unramified Selmer structure has

H1
f (Kv ,M) := H1(Gnr

v ,M Iv ), H1
s (Kv ,M) := H1(Iv ,M)G

nr
v .

▶ The geometric Selmer structure has

H1
f (Kv ,M) := E (Kv )/ℓE (Kv ), H1

s (Kv ,M) := H1(Kv ,E )[ℓ].
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Selmer structures

There is a localisation map

(·)v : H1(K ,M) → H1(Kv ,M).

▶ The classical Selmer group Sel(K ,M) sits in

0 → Sel(K ,M) → H1(K ,M)
∏

v (·)
s
v−−−−→
∏
v

H1
s (Kv ,M).

▶ The relaxed Selmer group SelS(K ,M) sits in

0 → Sel(K ,M) → SelS(K ,M)

∏
v∈S (·)

s
v−−−−−→
⊕
v∈S

H1
s (Kv ,M).

▶ The restricted Selmer group SelS(K ,M) sits in

0 → SelS(K ,M) → Sel(K ,M)

∏
v∈S (·)v−−−−−→

⊕
v∈S

H1
f (Kv ,M).
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Application of Tate duality

Proposition
Let S ′ ⊆ S be finite sets of places of K. There is an exact sequence

0 −→ SelS
′
−→ SelS −→

⊕
v∈S\S′

H1
s (Kv ,M) −→ Sel∨S′ −→ Sel∨S −→ 0.

Proof.
Local Tate duality gives a perfect pairing

H1
s (Kv ,M)× H1

f (Kv ,M) → Fℓ.

By the snake lemma, may assume that S and S ′ contain all bad places.
The Poitou–Tate exact sequence gives exactness at

SelS →
⊕
v∈S

H1(Kv ,M) → SelS∨ .

Diagram chase.
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Application of Tate duality

Proposition
Let S ′ ⊆ S be finite sets of places of K. There is an exact sequence

0 −→ SelS
′
−→ SelS −→

⊕
v∈S\S′

H1
s (Kv ,M) −→ Sel∨S′ −→ Sel∨S −→ 0.

Fact: complex conjugation of K respects the exact sequence. Thus

0 → SelS
′± → SelS± →

⊕
v∈S\S′

H1
s (Kv ,M)± → Sel∨±

S′ → Sel∨±
S → 0.

Specialising to S ′ = ∅ and M = E [ℓ],

0 → coker

(
SelS± →

⊕
v∈S

H1
s (Kv ,E [ℓ])

±

)
→ Sel∨± → Sel∨±

S → 0.

Idea: choose appropriate S .
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Application of Chebotarev density

Assume M is non-scalar and simple.

Let K (E [ℓ]) ⊆ L ⊆ L′ be finite extensions, and fix σ ∈ Gal(L′/L)−.
Choose a lift of complex conjugation τ ∈ Gal(L′/Q).

Lemma
There is a finite set S of inert primes of K/Q such that

1.
(

p
L′/Q

)
∼ στ for all p ∈ S, and

2. Sel±S ⊆ H1(L′/K ,E [ℓ])±.

Proof.
▶ Chebotarev density gives S satisfying 1.

▶ Fact: non-scalar and simple imply 2.

Idea: choose appropriate L′/L to bound Sel±S .
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Heegner points of higher conductors

Both SelS± and H1
s (Kv ,E [ℓ])

± in

0 → coker

(
SelS± →

⊕
v∈S

H1
s (Kv ,E [ℓ])

±

)
→ Sel∨± → Sel∨±

S → 0

are generated by some c(n) ∈ H1(K ,E [ℓ])± indexed by n ∈ N.

Each c(n) is generated by a Heegner point of conductor n.

conductor 1 conductor n

ring of integers OK order OK ,n

Hilbert class field K 1 ring class field K n

Heegner point P1 ∈ E (K 1) Heegner point Pn ∈ E (K n)
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Heegner points of higher conductors

The Heegner points Pn ∈ E (K n) satisfy “Euler system” relations.

Consider only the square-free n ∈ N (coprime to NDℓ) such that:

p | n =⇒ p is inert in K .

By class field theory,

Gal(K n/K 1) ∼= Cl(OK ,n)/Cl(OK ) ∼= (OK/n)
×/(Z/n)×.

Since n is square-free,

Gal(K n/K 1) ∼=
∏
p|n

Gal(K p/K 1).

Since p | n is inert in K ,

Gal(K p/K 1) = Z/(p + 1) · σp.
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Heegner points of higher conductors

Proposition (AX3)
Let n = pq. Then

1.
∑p

i=0 σ
i
pPpq = apPq in E (K q), and

2. Ppq =
(

pq

K q/K

)
Pq in E (Fpq

).

Proof (sketch of 1).
If Hp : Div(X0(N)) → Div(X0(N)) is the Hecke correspondence, then

p∑
i=0

σi
pxpq = Hpxq.

By Eichler–Shimura theory, for any D ∈ Div(X0(N)),

ϕ(HpD) = apϕ(D).
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Derived Kolyvagin classes

Given Pn ∈ E (K n), how to derive c(n) ∈ H1(K ,E [ℓ])?

Define a “trace”
Tn :=

∑
τ∈T

τ ∈ Z[Gal(K n/K )],

where T is a set of coset representatives for Gal(K n/K 1) ≤ Gal(K n/K ).

Define the Kolyvagin derivative

Dn :=
∏
p|n

Dp ∈ Z[Gal(K n/K 1)],

where Dp is any solution in Z[Gal(K n/K )] to

(σp − 1)Dp = p + 1− Tp.

Define Pn := [TnDnPn] ∈ E (K n)/ℓE (K n).
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Derived Kolyvagin classes

Fact: By AX3,

▶ Pn is fixed by Gn := Gal(K n/K ), and

▶ Pn lies in the ϵn := −ϵ · (−1)#{p|n} eigenspace.

There is an exact diagram

0

0 H1
f (K ,E [ℓ])ϵn H1(K ,E [ℓ])ϵn H1

s (K ,E [ℓ])ϵn 0

0 H1
f (K

n,E [ℓ])Gnϵn H1(K n,E [ℓ])Gnϵn H1
s (K

n,E [ℓ])Gnϵn

0.

infn

δ

resn

δn

tran

Define c(n) ∈ H1(K ,E [ℓ])ϵn by resn(c(n)) = δn(Pn).
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Derived Kolyvagin classes

Lemma
1. If v ∤ n, then c(n)sv = 0 (i.e. c(n) ∈ Sel{p|n}ϵn).

2. If v | n, then c(n)sv = 0 if and only if Pn/v ∈ ℓE (Kv ).

Proof (sketch of 1).
Assume v ∤ ℓ has good reduction. Then K n

v /Kv is unramified, so

0 H1
f (Kv ,E [ℓ]) H1(Kv ,E [ℓ]) Hom(Iv ,E [ℓ])

0 H1
f (K

n
v ,E [ℓ]) H1(K n

v ,E [ℓ]) Hom(Iv ,E [ℓ]).

(·)s

resn ∼

δn (·)s

Thus (resn(c(n)v ))
s = 0 by exactness.
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Computing the Selmer group

Compute Selϵ and Sel−ϵ separately.

Use the short exact sequence

0 → coker

SelS± →
⊕
p∈S

H1
s (Kp,E [ℓ])

±

→ Sel± → Sel±S → 0.

Restricted:

▶ Choose L′/L to get S such that Sel±S ⊆ H1(L′/K ,E [ℓ])±.

▶ Compute H1(L′/K ,E [ℓ])±.

Relaxed:

▶ Fact: each H1
s (Kp,E [ℓ])

± is one-dimensional.

▶ Show c(n) ∈ SelSϵn is non-zero in H1
s (Kp,E [ℓ]) for some n.
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Computing the Selmer group

Compute Selϵ.

Let L := K (E [ℓ]) and L′ := K (E [ℓ], 1
ℓPK ). Get S such that

SelϵS ⊆ H1(L′/K ,E [ℓ])ϵ ∼= Fℓ · δ(PK )︸ ︷︷ ︸
−ϵ

.

By Frobenius computations,

∀p ∈ S , c(p) ∈ SelSϵ, c(p)sp ̸= 0.

Thus

0 → coker

SelSϵ →
⊕
p∈S

H1
s (Kp,E [ℓ])

ϵ


︸ ︷︷ ︸

0

→ Selϵ → SelϵS︸︷︷︸
0

→ 0.
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Computing the Selmer group

Compute Sel−ϵ. Fix p ∈ S .

Let L := K (E [ℓ], 1
ℓPK ) and L′ := ker(GL

c(p)−−→ E [ℓ]). Get S ′ such that

Sel−ϵ
S′ ⊆ H1(L′/K ,E [ℓ])−ϵ ∼= Fℓ · δ(PK )︸ ︷︷ ︸

−ϵ

⊕ Fℓ · c(p)︸ ︷︷ ︸
ϵ

.

By Frobenius computations,

∀q ∈ S ′, c(pq) ∈ SelS
′−ϵ, c(pq)sq ̸= 0.

Thus

0 → coker

SelS
′−ϵ →

⊕
q∈S′

H1
s (Kq,E [ℓ])

−ϵ


︸ ︷︷ ︸

0

→ Sel−ϵ → Sel−ϵ
S′︸ ︷︷ ︸

⊆Fℓ·δ(PK )

→ 0.
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