

The Euler system of Heegner points ¹

London Junior Number Theory Seminar

David Kurniadi Angdinata

London School of Geometry and Number Theory

Tuesday, 10 May 2022

¹Victor Kolyvagin, 1989. **Euler Systems**, in *Grothendieck Festschrift*

Overview

- ▶ Introduction
 - ▶ From Gross–Zagier to Kolyvagin
 - ▶ Application to BSD
 - ▶ The main result
- ▶ Generalised Selmer groups
 - ▶ Selmer structures
 - ▶ Application of Tate duality
 - ▶ Application of Chebotarev density
- ▶ The Euler system of Heegner points
 - ▶ Heegner points of higher conductors
 - ▶ Derived Kolyvagin classes
 - ▶ Computing the Selmer group

From Gross–Zagier to Kolyvagin

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi : X_0(N) \rightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with **Heegner condition**:²

$$p \mid N \quad \implies \quad p \text{ is split in } K.$$

Consequences

- ▶ An ideal $\mathcal{N}_K \trianglelefteq \mathcal{O}_K$ such that $\mathcal{O}_K/\mathcal{N}_K \cong \mathbb{Z}/N$.
- ▶ A cyclic N -isogeny $\mathbb{C}/\mathcal{O}_K \rightarrow \mathbb{C}/\mathcal{N}_K^{-1}$.
- ▶ A point $x_1 \in X_0(N)(K^1)$ by CM theory.
- ▶ A **Heegner point** $P_1 := \phi(x_1) \in E(K^1)$.
- ▶ A **basic Heegner point**

$$P_K := \sum_{\sigma \in \text{Gal}(K^1/K)} \sigma(P_1) \in E(K).$$

²assume $\text{End}(E) \cong \mathbb{Z}$ and $D \neq 1, 3$

From Gross–Zagier to Kolyvagin

Recall the Gross–Zagier formula.

Theorem (Gross–Zagier, 1986)

There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \widehat{h}(P_K)$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\text{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)

If $\widehat{h}(P_K) \neq 0$, then $E(K)_{/\text{tor}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Corollary

If $L'(E/K, 1) \neq 0$, then $\text{rk}_{\mathbb{Z}} E(K) = 1$.

This *almost* proves weak BSD for analytic rank ≤ 1 !

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\text{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then $\text{ord}_{s=1} L(E/\mathbb{Q}, s) = \text{rk}_{\mathbb{Z}} E(\mathbb{Q})$.

Proof.

Consider the functional equation

$$\Lambda(E/\mathbb{Q}, s) = \epsilon \cdot \Lambda(E/\mathbb{Q}, 2-s).$$

Differentiating k times and evaluating at $s = 1$ gives

$$L^{(k)}(E/\mathbb{Q}, 1) = \epsilon \cdot (-1)^k \cdot L^{(k)}(E/\mathbb{Q}, 1).$$

Then

$$\text{ord}_{s=1} L(E/\mathbb{Q}, s) = \begin{cases} 0 & \text{if } \epsilon = +, \\ 1 & \text{if } \epsilon = -. \end{cases}$$

Consider cases for ϵ .

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)

Assume $\text{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then $\text{ord}_{s=1} L(E/\mathbb{Q}, s) = \text{rk}_{\mathbb{Z}} E(\mathbb{Q})$.

Proof (for $\epsilon = -$).

Fact: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\text{ord}_{s=1} L(E/K, s) = \underbrace{\text{ord}_{s=1} L(E/\mathbb{Q}, s)}_1 + \underbrace{\text{ord}_{s=1} L(E_D/\mathbb{Q}, s)}_0.$$

In particular

$$L'(E/K, 1) \neq 0 \xrightarrow{G-\mathbb{Z}} \widehat{h}(P_K) \neq 0 \xrightarrow{K} E(K)_{/\text{tor}} = \mathbb{Z} \cdot \frac{1}{n} P_K.$$

Fact: complex conjugation of K acts like $-\epsilon$ on $E(K)_{/\text{tor}}$.

Thus $E(\mathbb{Q})_{/\text{tor}} = \mathbb{Z} \cdot \frac{1}{n} P_K$, so $\text{rk}_{\mathbb{Z}} E(\mathbb{Q}) = 1$. □

The main result

Theorem (Kolyvagin, 1989)

If $\widehat{h}(P_K) \neq 0$, then $E(K)/_{\text{tor}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

Theorem (main result ³)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$\text{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \text{GL}_2(\mathbb{F}_\ell), \quad P_K \notin \ell E(K).$$

Then $\text{Sel}(K, E[\ell]) = \mathbb{F}_\ell \cdot \delta(P_K)$.

Proof (of Kolyvagin).

For any $\ell \in \mathbb{N}$, there is a short exact sequence

$$0 \rightarrow E(K)/\ell E(K) \xrightarrow{\delta} \text{Sel}(K, E[\ell]) \rightarrow \text{III}(K, E)[\ell] \rightarrow 0.$$

Choose any $\ell \in \mathbb{N}$ such that K and $\mathbb{Q}(E[\ell])$ are linearly disjoint over \mathbb{Q} .

Then $E(K)[\ell] = 0$, so that $\dim_{\mathbb{F}_\ell} E(K)/\ell E(K) = \text{rk}_{\mathbb{Z}} E(K)$. □

³Benedict Gross, 1991. **Kolyvagin's work on modular elliptic curves**

Selmer structures

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_\ell[\text{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

- ▶ Fact: Galois equivariance of ℓ -Weil pairing implies M is non-scalar.
- ▶ Fact: surjective ℓ -adic representation implies M is simple.

By inflation-restriction, there is a short exact sequence

$$0 \rightarrow H^1(G_v^{\text{nr}}, M^{I_v}) \rightarrow H^1(K_v, M) \rightarrow H^1(I_v, M)^{G_v^{\text{nr}}} \rightarrow 0.$$

Example

Let $v \nmid \ell$ have good reduction. Then there is a short exact sequence

$$0 \rightarrow E(K_v)/\ell E(K_v) \xrightarrow{\delta} H^1(K_v, M) \rightarrow H^1(K_v, E)[\ell] \rightarrow 0.$$

Selmer structures

A **Selmer structure** on M is an assignment

$$v \longmapsto H_f^1(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{\text{nr}}, M^{I_v})$ for almost all places v of K .

Its **singular quotient** $H_s^1(K_v, M)$ sits in

$$0 \rightarrow H_f^1(K_v, M) \rightarrow H^1(K_v, M) \xrightarrow{(\cdot)^s} H_s^1(K_v, M) \rightarrow 0.$$

Example

- The **unramified** Selmer structure has

$$H_f^1(K_v, M) := H^1(G_v^{\text{nr}}, M^{I_v}), \quad H_s^1(K_v, M) := H^1(I_v, M)^{G_v^{\text{nr}}}.$$

- The **geometric** Selmer structure has

$$H_f^1(K_v, M) := E(K_v)/\ell E(K_v), \quad H_s^1(K_v, M) := H^1(K_v, E)[\ell].$$

Selmer structures

There is a localisation map

$$(\cdot)_v : H^1(K, M) \rightarrow H^1(K_v, M).$$

- ▶ The **classical** Selmer group $\text{Sel}(K, M)$ sits in

$$0 \rightarrow \text{Sel}(K, M) \rightarrow H^1(K, M) \xrightarrow{\prod_v (\cdot)_v^s} \prod_v H^1_s(K_v, M).$$

- ▶ The **relaxed** Selmer group $\text{Sel}^S(K, M)$ sits in

$$0 \rightarrow \text{Sel}(K, M) \rightarrow \text{Sel}^S(K, M) \xrightarrow{\prod_{v \in S} (\cdot)_v^s} \bigoplus_{v \in S} H^1_s(K_v, M).$$

- ▶ The **restricted** Selmer group $\text{Sel}_S(K, M)$ sits in

$$0 \rightarrow \text{Sel}_S(K, M) \rightarrow \text{Sel}(K, M) \xrightarrow{\prod_{v \in S} (\cdot)_v} \bigoplus_{v \in S} H^1_f(K_v, M).$$

Application of Tate duality

Proposition

Let $S' \subseteq S$ be finite sets of places of K . There is an exact sequence

$$0 \longrightarrow \text{Sel}^{S'} \longrightarrow \text{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H_s^1(K_v, M) \longrightarrow \text{Sel}_{S'}^\vee \longrightarrow \text{Sel}_S^\vee \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H_s^1(K_v, M) \times H_f^1(K_v, M) \rightarrow \mathbb{F}_\ell.$$

By the snake lemma, may assume that S and S' contain all bad places.

The Poitou–Tate exact sequence gives exactness at

$$\text{Sel}^S \rightarrow \bigoplus_{v \in S} H^1(K_v, M) \rightarrow \text{Sel}^{S^\vee}.$$

Diagram chase. □

Application of Tate duality

Proposition

Let $S' \subseteq S$ be finite sets of places of K . There is an exact sequence

$$0 \longrightarrow \text{Sel}^{S'} \longrightarrow \text{Sel}^S \longrightarrow \bigoplus_{v \in S \setminus S'} H_s^1(K_v, M) \longrightarrow \text{Sel}_{S'}^\vee \longrightarrow \text{Sel}_S^\vee \longrightarrow 0.$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$0 \rightarrow \text{Sel}^{S' \pm} \rightarrow \text{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S \setminus S'} H_s^1(K_v, M)^\pm \rightarrow \text{Sel}_{S'}^{\vee \pm} \rightarrow \text{Sel}_S^{\vee \pm} \rightarrow 0.$$

Specialising to $S' = \emptyset$ and $M = E[\ell]$,

$$0 \rightarrow \text{coker} \left(\text{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S} H_s^1(K_v, E[\ell])^\pm \right) \rightarrow \text{Sel}^{\vee \pm} \rightarrow \text{Sel}_S^{\vee \pm} \rightarrow 0.$$

Idea: choose appropriate S .

Application of Chebotarev density

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \text{Gal}(L'/L)^-$.
Choose a lift of complex conjugation $\tau \in \text{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

1. $\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma\tau$ for all $p \in S$, and
2. $\text{Sel}_S^\pm \subseteq H^1(L'/K, E[\ell])^\pm$.

Proof.

- ▶ Chebotarev density gives S satisfying 1.
- ▶ Fact: non-scalar and simple imply 2.

Idea: choose appropriate L'/L to bound Sel_S^\pm .

Heegner points of higher conductors

Both $\text{Sel}^{S\pm}$ and $H_s^1(K_v, E[\ell])^\pm$ in

$$0 \rightarrow \text{coker} \left(\text{Sel}^{S\pm} \rightarrow \bigoplus_{v \in S} H_s^1(K_v, E[\ell])^\pm \right) \rightarrow \text{Sel}^{\vee\pm} \rightarrow \text{Sel}_S^{\vee\pm} \rightarrow 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^\pm$ indexed by $n \in \mathbb{N}$.

Each $c(n)$ is generated by a **Heegner point of conductor n** .

conductor 1	conductor n
ring of integers \mathcal{O}_K	order $\mathcal{O}_{K,n}$
Hilbert class field K^1	ring class field K^n
Heegner point $P_1 \in E(K^1)$	Heegner point $P_n \in E(K^n)$

Heegner points of higher conductors

The Heegner points $P_n \in E(K^n)$ satisfy “Euler system” relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

$$p \mid n \implies p \text{ is inert in } K.$$

By class field theory,

$$\text{Gal}(K^n/K^1) \cong \text{Cl}(\mathcal{O}_{K,n}) / \text{Cl}(\mathcal{O}_K) \cong (\mathcal{O}_K/n)^\times / (\mathbb{Z}/n)^\times.$$

Since n is square-free,

$$\text{Gal}(K^n/K^1) \cong \prod_{p \mid n} \text{Gal}(K^p/K^1).$$

Since $p \mid n$ is inert in K ,

$$\text{Gal}(K^p/K^1) = \mathbb{Z}/(p+1) \cdot \sigma_p.$$

Heegner points of higher conductors

Proposition (AX3)

Let $n = pq$. Then

1. $\sum_{i=0}^p \sigma_p^i P_{pq} = a_p P_q$ in $E(K^q)$, and
2. $\overline{P_{pq}} = \overline{\left(\frac{\mathfrak{p}_q}{K^q/K} \right) P_q}$ in $\overline{E}(\mathbb{F}_{\mathfrak{p}_q})$.

Proof (sketch of 1).

If $H_p : \text{Div}(X_0(N)) \rightarrow \text{Div}(X_0(N))$ is the Hecke correspondence, then

$$\sum_{i=0}^p \sigma_p^i x_{pq} = H_p x_q.$$

By Eichler–Shimura theory, for any $D \in \text{Div}(X_0(N))$,

$$\phi(H_p D) = a_p \phi(D).$$

Derived Kolyvagin classes

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Define a “trace”

$$T_n := \sum_{\tau \in T} \tau \in \mathbb{Z}[\text{Gal}(K^n/K)],$$

where T is a set of coset representatives for $\text{Gal}(K^n/K^1) \leq \text{Gal}(K^n/K)$.

Define the **Kolyvagin derivative**

$$D_n := \prod_{p|n} D_p \in \mathbb{Z}[\text{Gal}(K^n/K^1)],$$

where D_p is any solution in $\mathbb{Z}[\text{Gal}(K^n/K)]$ to

$$(\sigma_p - 1)D_p = p + 1 - T_p.$$

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n)/\ell E(K^n)$.

Derived Kolyvagin classes

Fact: By AX3,

- ▶ \mathcal{P}_n is fixed by $G_n := \text{Gal}(K^n/K)$, and
- ▶ \mathcal{P}_n lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

There is an exact diagram

$$\begin{array}{ccccccc} & & 0 & & & & \\ & & \downarrow \text{inf}_n & & & & \\ 0 \rightarrow H_f^1(K, E[\ell])^{\epsilon_n} & \xrightarrow{\delta} & H^1(K, E[\ell])^{\epsilon_n} & \longrightarrow & H_s^1(K, E[\ell])^{\epsilon_n} & \rightarrow 0 \\ \downarrow & & \downarrow \text{res}_n & & \downarrow & & \\ 0 \rightarrow H_f^1(K^n, E[\ell])^{G_n \epsilon_n} & \xrightarrow{\delta_n} & H^1(K^n, E[\ell])^{G_n \epsilon_n} & \rightarrow & H_s^1(K^n, E[\ell])^{G_n \epsilon_n} & & \\ & & \downarrow \text{tra}_n & & & & \\ & & 0. & & & & \end{array}$$

Define $c(n) \in H^1(K, E[\ell])^{\epsilon_n}$ by $\text{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Derived Kolyvagin classes

Lemma

1. If $v \nmid n$, then $c(n)_v^s = 0$ (i.e. $c(n) \in \text{Sel}^{\{p|n\}\epsilon_n}$).
2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction. Then K_v^n/K_v is unramified, so

$$\begin{array}{ccccccc} 0 & \longrightarrow & H_f^1(K_v, E[\ell]) & \longrightarrow & H^1(K_v, E[\ell]) & \xrightarrow{(\cdot)^s} & \text{Hom}(I_v, E[\ell]) \\ & & \downarrow & & \downarrow \text{res}_n & & \downarrow \sim \\ 0 & \longrightarrow & H_f^1(K_v^n, E[\ell]) & \xrightarrow{\delta_n} & H^1(K_v^n, E[\ell]) & \xrightarrow{(\cdot)^s} & \text{Hom}(I_v, E[\ell]). \end{array}$$

Thus $(\text{res}_n(c(n)_v))^s = 0$ by exactness. □

Computing the Selmer group

Compute Sel^ϵ and $\text{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

$$0 \rightarrow \text{coker} \left(\text{Sel}^{S\pm} \rightarrow \bigoplus_{p \in S} H_s^1(K_p, E[\ell])^\pm \right) \rightarrow \text{Sel}^\pm \rightarrow \text{Sel}_S^\pm \rightarrow 0.$$

Restricted:

- ▶ Choose L'/L to get S such that $\text{Sel}_S^\pm \subseteq H^1(L'/K, E[\ell])^\pm$.
- ▶ Compute $H^1(L'/K, E[\ell])^\pm$.

Relaxed:

- ▶ Fact: each $H_s^1(K_p, E[\ell])^\pm$ is one-dimensional.
- ▶ Show $c(n) \in \text{Sel}^{S\epsilon_n}$ is non-zero in $H_s^1(K_p, E[\ell])$ for some n .

Computing the Selmer group

Compute Sel^ϵ .

Let $L := K(E[\ell])$ and $L' := K(E[\ell], \frac{1}{\ell}P_K)$. Get S such that

$$\text{Sel}_S^\epsilon \subseteq H^1(L'/K, E[\ell])^\epsilon \cong \underbrace{\mathbb{F}_\ell \cdot \delta(P_K)}_{-\epsilon}.$$

By Frobenius computations,

$$\forall p \in S, \quad c(p) \in \text{Sel}^{S\epsilon}, \quad c(p)_p^s \neq 0.$$

Thus

$$0 \rightarrow \text{coker} \left(\underbrace{\text{Sel}^{S\epsilon} \rightarrow \bigoplus_{p \in S} H^1_s(K_p, E[\ell])^\epsilon}_{0} \right) \rightarrow \text{Sel}^\epsilon \rightarrow \underbrace{\text{Sel}_S^\epsilon}_0 \rightarrow 0.$$

Computing the Selmer group

Compute $\text{Sel}^{-\epsilon}$. Fix $p \in S$.

Let $L := K(E[\ell], \frac{1}{\ell}P_K)$ and $L' := \ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that

$$\text{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/K, E[\ell])^{-\epsilon} \cong \underbrace{\mathbb{F}_\ell \cdot \delta(P_K)}_{-\epsilon} \oplus \underbrace{\mathbb{F}_\ell \cdot c(p)}_{\epsilon}.$$

By Frobenius computations,

$$\forall q \in S', \quad c(pq) \in \text{Sel}^{S' - \epsilon}, \quad c(pq)_q^s \neq 0.$$

Thus

$$0 \rightarrow \text{coker} \left(\underbrace{\text{Sel}^{S' - \epsilon} \rightarrow \bigoplus_{q \in S'} H^1_s(K_q, E[\ell])^{-\epsilon}}_0 \right) \rightarrow \text{Sel}^{-\epsilon} \rightarrow \underbrace{\text{Sel}_{S'}^{-\epsilon}}_{\subseteq \mathbb{F}_\ell \cdot \delta(P_K)} \rightarrow 0.$$