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From Gross—Zagier to Kolyvagin

Assumptions
» Elliptic curve E/Q with modular parameterisation ¢ : Xo(N) — E.

» Imaginary quadratic field K = Q(/—D) with Heegner condition: 2

p|N = p is split in K.
Consequences
> An ideal N < Ok such that Ox /Nk = Z/N.
A cyclic N-isogeny C/Ok — C/N*.
A point x; € Xo(N)(K') by CM theory.
A Heegner point P; := ¢(x1) € E(K?).
A basic Heegner point

Pc:= Y. o(P)eE(K).

o€Gal(K/K)

>
>
>
>

2assume End(E) = Z and D # 1,3
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From Gross—Zagier to Kolyvagin

Recall the Gross—Zagier formula.

Theorem (Gross—Zagier, 1986)
There is some ¢ # 0 such that L'(E/K,1) = c - II;(PK).

Corollary
IfFL'(E/K,1) #0, then rky E(K) > 1.

Theorem (Kolyvagin, 1989)
Ifh(Pk) # 0, then E(K) /or = Z - 2 Py.

Corollary
IfFL'(E/K,1) # 0, then rky E(K) = 1.

This almost proves weak BSD for analytic rank < 1!
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Application to BSD
Theorem (Weak BSD for analytic rank < 1)
Assume ords—1 L(E/Q,s) <1. Thenords—; L(E/Q,s) = rkz E(Q).
Proof.

Consider the functional equation
NE/Q.s) = e NE/Q,2 — s).
Differentiating k times and evaluating at s = 1 gives
LO(E/Q,1) = e- (-1)*- LY(E/Q,1).

Then
0 ife=-+,

0I’C|5:1 L(E/Q,S) = {1 If €= —

Consider cases for e.
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Application to BSD
Theorem (Weak BSD for analytic rank < 1)
Assume ords—1 L(E/Q,s) <1. Thenords—; L(E/Q,s) = rkz E(Q).

Proof (for e = —).
Fact: There is Heegner K = Q(+v/—D) such that L(Ep/Q, 1) # 0. Then

ords—1 L(E/K,s) =ords—; L(E/Q,s)+ords—1 L(Ep/Q,s).

1 0

In particular
U(E/K 1) #0 =5 h(Pk)#£0 = E(K) wr=2Z- LPx.

Fact: complex conjugation of K acts like —¢ on E(K) /o

Thus E(Q)tor = Z - 1 Px, s0 rkz E(Q) = 1. O
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The main result

Theorem (Kolyvagin, 1989)
If h(Pk) # 0, then E(K) /sor = Z - 1 Px.

Theorem (main result 3)
Let ¢ € N be an odd prime of good reduction such that

Gal(Q(E[])/Q) = GLa(Fr), Pk ¢ LE(K).
Then Sel(K, E[{]) = F, - 6(Pk).

Proof (of Kolyvagin).

For any ¢ € N, there is a short exact sequence
0 — E(K)/E(K) 2 Sel(K, E[f]) — TI(K, E)[¢] — 0.

Choose any ¢ € N such that K and Q(E[{]) are linearly disjoint over Q.
Then E(K)[(] =0, so that dimy, E(K)/(E(K) = rky, E(K). m

3Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves
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Selmer structures
Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual Fy[Gal(L/K)]-module.

Example

Let M = E[/).
» Fact: Galois equivariance of /-Weil pairing implies M is non-scalar.
» Fact: surjective /-adic representation implies M is simple.

By inflation-restriction, there is a short exact sequence

0 — HYG™, MY = HY(K,, M) — H(l,, M)®" — 0.

Example

Let v 1 ¢ have good reduction. Then there is a short exact sequence

0 — E(K,)/CE(K,) & HY(K,, M) — HY(K,, E)[{] — 0.
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Selmer structures

A Selmer structure on M is an assignment
v— HHK,, M) C H(K,, M),

such that H}(K,, M) = HY(G2*, M") for almost all places v of K.
Its singular quotient H.(K,, M) sits in

0 — HY(K,, M) — HY(K,, M) L5 HY(K,, M) — .

s

Example

» The unramified Selmer structure has
HE (K, M) i= HY(G)", MY),  HE(Ky, M) == H (1, M)S".
» The geometric Selmer structure has

Hi (Ko, M) == E(K)/CE(K,),  Hi(Ky, M) = H'(K,, E)[4].
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Selmer structures

There is a localisation map

() : HY(K, M) — HY(K,, M).

» The classical Selmer group Sel(K, M) sits in

0 Sel(K, M) — H'(K, M) 2% TT HE (K., m).

> The relaxed Selmer group Sel® (K, M) sits in
0 — Sel(K, M) — Sel*(K, M) ThoesO, @Hl K,, M).
veS
> The restricted Selmer group Sels(K, M) sits in
0 — Sels(K, M) — Sel(K, M) TesOr, @Hf K,, M).
ves
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Application of Tate duality

Proposition
Let S" C S be finite sets of places of K. There is an exact sequence

00— Sel® —Sel® — HX(K,, M) — Sell, — Sel! — 0.
s S S

veS\S’

Proof.
Local Tate duality gives a perfect pairing

HX(K,, M) x H}(K,, M) — F,.

By the snake lemma, may assume that S and S’ contain all bad places.

The Poitou—Tate exact sequence gives exactness at

Sel® — @D H'(K,, M) — Sel®" .
ves

Diagram chase.
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Application of Tate duality

Proposition
Let S" C S be finite sets of places of K. There is an exact sequence

0—> Sel® —Sel® — HY(K,, M) — Sel¢, — Sel{ — 0.
s S S
veS\S’

Fact: complex conjugation of K respects the exact sequence. Thus

0= Sel®® = Sel®™ — (P HA(K,, M)* — SelfF — Seld* — 0.
veS\S’

Specialising to S’ = () and M = E[{],

0 — coker Sels — Hl KV, E[¢ — Selv — Selv — 0.
s S
vES

Idea: choose appropriate S.
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Application of Chebotarev density
Assume M is non-scalar and simple.

Let K(E[{]) C L C L’ be finite extensions, and fix o € Gal(L'/L)~.
Choose a lift of complex conjugation 7 € Gal(L'/Q).

Lemma
There is a finite set S of inert primes of K /Q such that

1. (%) ~or forallp€ S, and
2. Sels € HY(L'/K, E[])*.

Proof.
» Chebotarev density gives S satisfying 1.

» Fact: non-scalar and simple imply 2.

Idea: choose appropriate L'/L to bound Sel?
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Heegner points of higher conductors
Both Sel®* and H(K,, E[¢])¥ in

0 — coker <Se|5i — P HAK., E[e])i> — SelY* = Sell* - 0
veSs

are generated by some c(n) € H'(K, E[{])* indexed by n € N.

Each c(n) is generated by a Heegner point of conductor n.

conductor 1 conductor n
ring of integers Ok order Ok
Hilbert class field K! ring class field K"

Heegner point P; € E(K!) | Heegner point P, € E(K™)
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Heegner points of higher conductors
The Heegner points P, € E(K") satisfy “Euler system” relations.
Consider only the square-free n € N (coprime to ND/) such that:
pln = pis inert in K.
By class field theory,
Gal(K"/K') = CI(Ok.»)/ Cl(Ok) = (Ok/n)* /(Z/n)*.
Since n is square-free,

Gal(K"/K') = [ ] Gal(k?/K™).

pln

Since p | nis inert in K,

Gal(KP/KY) =Z/(p+1) - 0p.
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Heegner points of higher conductors

Proposition (AX3)
Let n = pq. Then
1. ¥ 0pPpg = apPq in E(K9), and

2. Pog = (KQ/K) Py in E(F,,).

Proof (sketch of 1).
If Hp : Div(Xp(N)) — Div(Xo(N)) is the Hecke correspondence, then

P
Z 0pXpg = Hpxg.
i=0

By Eichler—Shimura theory, for any D € Div(Xp(N)),

¢(HpD) = app(D).
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Derived Kolyvagin classes
Given P, € E(K"), how to derive c(n) € HY(K, E[{])?
Define a “trace”

T,:= > 7€Z[Gal(K"/K)],

TET

where T is a set of coset representatives for Gal(K"/K') < Gal(K"/K).

Define the Kolyvagin derivative

D, := H D, € Z[Gal(K"/K")],

pln
where D, is any solution in Z[Gal(K"/K)] to
(0p—1)Dp=p+1—T,.

Define P, 1= [T,D,P,] € E(K")/LE(K™).
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Derived Kolyvagin classes

Fact: By AX3,
> P, is fixed by G, := Gal(K"/K), and
> P, lies in the ¢, := —¢ - (—1)#{PI"} eigenspace.

There is an exact diagram

0
2

0 — HYK, E[]) — HY(K, E[(])* — HX(K, E[{])* — 0

| ~

0 > H}(K" E[])r » HY(K" E[(])% » Hi(K", E[(])%
tra,

0.

Define c(n) € HY(K, E[¢])* by resn(c(n)) = 6,(Pn).
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Derived Kolyvagin classes

Lemma
1. If vin, then c(n)s =0 (i.e. c(n) € SellPIm}en).
2. If v | n, then c(n); =0 if and only if Pnyy € (E(K,).

Proof (sketch of 1).

Assume v 1 £ has good reduction. Then K!/K, is unramified, so

0 — s HY(K,, E[f]) —— HY(K,, E[]) —5 Hom(l,, E[1)

| - g

0 —— HA(KZLE[l]) —— HM(KZ,E[f]) —5 Hom(l,, E[A).

Thus (resn(c(n),))® = 0 by exactness.
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Computing the Selmer group

Compute Sel® and Sel™ ¢ separately.

Use the short exact sequence

0 — coker | Sel®* — @) H(Kp, E[0])* | — Sel* — Sels — 0.
peS

Restricted:
> Choose L'/L to get S such that Sel¥ C HY(L'/K, E[{])*.
» Compute HY(L'/K, E[{])*.

Relaxed:
» Fact: each H}(K,, E[{])T is one-dimensional.

> Show c(n) € Sel**" is non-zero in HX(K,, E[¢]) for some n.
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Computing the Selmer group

Compute Sel®.
Let L := K(E[{]) and L' :== K(E[{], }Px). Get S such that
Sels € HY(L'/K, E[(]) = F, - §(Pk).
—
By Frobenius computations,

VpeS,  c(p)eSel®,  c(p); #0.

Thus

0 — coker (seﬁf — P HX (K, E[E])E) — Sel® — Sel§ — 0.
~~

peES 0

0
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Computing the Selmer group
Compute Sel™ . Fix p € S.

Let L := K(E[(], 1Px) and L' := ker(G, <25 E[]). Get S such that

Sels C H'(L'/K, Ell])™* = Fy - 6(Pk) @ Fy - c(p).
—_———  —\

—€ €

By Frobenius computations,

¥ge S, c(pq) €Sel® ™, c(pq); #0.
Thus
0 — coker (Selsl_6 — @ H(K,, E[ﬁ])e) — Sel™ = SelgS — 0.

—
!
9€3 CFy-8(Pk)

0
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