London School of Geometry and Number Theory

London Junior Number Theory Seminar

The Euler system of Heegner points ${ }^{1}$

David Ang

Tuesday, 10 May 2022
${ }^{1}$ Victor Kolyvagin, 1989. Euler Systems, in Grothendieck Festschrift

Overview

- Introduction
- From Gross-Zagier to Kolyvagin
- Application to BSD
- The main result
- Generalised Selmer groups
- Selmer structures
- Application of Tate duality
- Application of Chebotarev density
- The Euler system of Heegner points
- Heegner points of higher conductors
- Derived Kolyvagin classes
- Computing the Selmer group

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition: ${ }^{2}$

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition: ${ }^{2}$

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition: ${ }^{2}$

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition: ${ }^{2}$

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)$

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition: ${ }^{2}$

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)\left(K^{1}\right)$ by CM theory.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition: ${ }^{2}$

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)\left(K^{1}\right)$ by CM theory.
- A Heegner point $P_{1}:=\phi\left(x_{1}\right) \in E\left(K^{1}\right)$.

From Gross-Zagier to Kolyvagin

Assumptions

- Elliptic curve E / \mathbb{Q} with modular parameterisation $\phi: X_{0}(N) \rightarrow E$.
- Imaginary quadratic field $K=\mathbb{Q}(\sqrt{-D})$ with Heegner condition: ${ }^{2}$

$$
p \mid N \quad \Longrightarrow \quad p \text { is split in } K .
$$

Consequences

- An ideal $\mathcal{N}_{K} \unlhd \mathcal{O}_{K}$ such that $\mathcal{O}_{K} / \mathcal{N}_{K} \cong \mathbb{Z} / N$.
- A cyclic N-isogeny $\mathbb{C} / \mathcal{O}_{K} \rightarrow \mathbb{C} / \mathcal{N}_{K}^{-1}$.
- A point $x_{1} \in X_{0}(N)\left(K^{1}\right)$ by CM theory.
- A Heegner point $P_{1}:=\phi\left(x_{1}\right) \in E\left(K^{1}\right)$.
- A basic Heegner point

$$
P_{K}:=\sum_{\sigma \in \operatorname{Gal}\left(K^{1} / K\right)} \sigma\left(P_{1}\right) \in E(K) .
$$

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)
There is some $c \neq 0$ such that $L^{\prime}(E / K, 1)=c \cdot \hat{h}\left(P_{K}\right)$.

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)
There is some $c \neq 0$ such that $L^{\prime}(E / K, 1)=c \cdot \hat{h}\left(P_{K}\right)$.
Corollary
If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)
There is some $c \neq 0$ such that $L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)$.
Corollary
If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{\text {/tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)
There is some $c \neq 0$ such that $L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)$.
Corollary
If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{\text {/tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.
Corollary
If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K)=1$.

From Gross-Zagier to Kolyvagin

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)
There is some $c \neq 0$ such that $L^{\prime}(E / K, 1)=c \cdot \widehat{h}\left(P_{K}\right)$.
Corollary
If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{\text {/tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.
Corollary
If $L^{\prime}(E / K, 1) \neq 0$, then $\mathrm{rk}_{\mathbb{Z}} E(K)=1$.

This almost proves weak BSD for analytic rank ≤ 1 !

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume ord ${ }_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}) .
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\mathrm{rk}_{\mathbb{Z}} E(\mathbb{Q}) .
$$

Proof.
Consider the functional equation

$$
\Lambda(E / \mathbb{Q}, s)=\epsilon \cdot \Lambda(E / \mathbb{Q}, 2-s)
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\mathrm{rk}_{\mathbb{Z}} E(\mathbb{Q}) .
$$

Proof.
Consider the functional equation

$$
\begin{gathered}
\Lambda(E / \mathbb{Q}, s)=\epsilon \cdot \Lambda(E / \mathbb{Q}, 2-s) \\
\left.\stackrel{d^{k}}{d s^{k} k}\right|_{s=1} ^{\Longrightarrow} \\
L^{(k)}(E / \mathbb{Q}, 1)=\epsilon \cdot(-1)^{k} \cdot L^{(k)}(E / \mathbb{Q}, 1) .
\end{gathered}
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\mathrm{rk}_{\mathbb{Z}} E(\mathbb{Q}) .
$$

Proof.
Consider the functional equation

$$
\begin{aligned}
\Lambda(E / \mathbb{Q}, s) & =\epsilon \cdot \Lambda(E / \mathbb{Q}, 2-s) \\
\left.\stackrel{\frac{d}{}_{k}}{d s^{k}}\right|_{s-1} & L^{(k)}(E / \mathbb{Q}, 1)=\epsilon \cdot(-1)^{k} \cdot L^{(k)}(E / \mathbb{Q}, 1) .
\end{aligned}
$$

Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\left\{\begin{array}{ll}
0 & \epsilon=+ \\
1 & \epsilon=-
\end{array} .\right.
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\mathrm{rk}_{\mathbb{Z}} E(\mathbb{Q}) .
$$

Proof.
Consider the functional equation

$$
\begin{aligned}
& \Lambda(E / \mathbb{Q}, s) \\
&=\epsilon \cdot \Lambda(E / \mathbb{Q}, 2-s) \\
&\left.\stackrel{\frac{d}{}_{k}}{d s^{k}}\right|_{s=1} \quad L^{(k)}(E / \mathbb{Q}, 1)=\epsilon \cdot(-1)^{k} \cdot L^{(k)}(E / \mathbb{Q}, 1) .
\end{aligned}
$$

Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\left\{\begin{array}{ll}
0 & \epsilon=+ \\
1 & \epsilon=-
\end{array} .\right.
$$

Consider cases for ϵ.

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})
$$

Proof (for $\epsilon=-$).
Fact: There is Heegner $K=\mathbb{Q}(\sqrt{-D})$ such that $L\left(E_{D} / \mathbb{Q}, 1\right) \neq 0$.

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})
$$

Proof (for $\epsilon=-$).
Fact: There is Heegner $K=\mathbb{Q}(\sqrt{-D})$ such that $L\left(E_{D} / \mathbb{Q}, 1\right) \neq 0$. Then

$$
\operatorname{ord}_{s=1} L(E / K, s)=\underbrace{\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)}_{1}+\underbrace{\operatorname{ord}_{s=1} L\left(E_{D} / \mathbb{Q}, s\right)}_{0} .
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})
$$

Proof (for $\epsilon=-$).
Fact: There is Heegner $K=\mathbb{Q}(\sqrt{-D})$ such that $L\left(E_{D} / \mathbb{Q}, 1\right) \neq 0$. Then

$$
\operatorname{ord}_{s=1} L(E / K, s)=\underbrace{\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)}_{1}+\underbrace{\operatorname{ord}_{s=1} L\left(E_{D} / \mathbb{Q}, s\right)}_{0} .
$$

In particular

$$
L^{\prime}(E / K, 1) \neq 0
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})
$$

Proof (for $\epsilon=-$).
Fact: There is Heegner $K=\mathbb{Q}(\sqrt{-D})$ such that $L\left(E_{D} / \mathbb{Q}, 1\right) \neq 0$. Then

$$
\operatorname{ord}_{s=1} L(E / K, s)=\underbrace{\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)}_{1}+\underbrace{\operatorname{ord}_{s=1} L\left(E_{D} / \mathbb{Q}, s\right)}_{0} .
$$

In particular

$$
L^{\prime}(E / K, 1) \neq 0 \quad \xrightarrow{\mathrm{G}-\mathrm{Z}} \hat{h}\left(P_{K}\right) \neq 0
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})
$$

Proof (for $\epsilon=-$).
Fact: There is Heegner $K=\mathbb{Q}(\sqrt{-D})$ such that $L\left(E_{D} / \mathbb{Q}, 1\right) \neq 0$. Then

$$
\operatorname{ord}_{s=1} L(E / K, s)=\underbrace{\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)}_{1}+\underbrace{\operatorname{ord}_{s=1} L\left(E_{D} / \mathbb{Q}, s\right)}_{0} .
$$

In particular

$$
L^{\prime}(E / K, 1) \neq 0 \xrightarrow{\mathrm{G-Z}} \widehat{h}\left(P_{K}\right) \neq 0 \xrightarrow{\mathrm{~K}} E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K} .
$$

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})
$$

Proof (for $\epsilon=-$).
Fact: There is Heegner $K=\mathbb{Q}(\sqrt{-D})$ such that $L\left(E_{D} / \mathbb{Q}, 1\right) \neq 0$. Then

$$
\operatorname{ord}_{s=1} L(E / K, s)=\underbrace{\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)}_{1}+\underbrace{\operatorname{ord}_{s=1} L\left(E_{D} / \mathbb{Q}, s\right)}_{0} .
$$

In particular

$$
L^{\prime}(E / K, 1) \neq 0 \xrightarrow{\mathrm{G-Z}} \hat{h}\left(P_{K}\right) \neq 0 \xrightarrow{\mathrm{~K}} E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K} .
$$

Fact: complex conjugation of K acts like $-\epsilon$ on $E(K)_{/ \text {tors }}$.

Application to BSD

Theorem (Weak BSD for analytic rank ≤ 1)
Assume $\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s) \leq 1$. Then

$$
\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)=\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q})
$$

Proof (for $\epsilon=-$).
Fact: There is Heegner $K=\mathbb{Q}(\sqrt{-D})$ such that $L\left(E_{D} / \mathbb{Q}, 1\right) \neq 0$. Then

$$
\operatorname{ord}_{s=1} L(E / K, s)=\underbrace{\operatorname{ord}_{s=1} L(E / \mathbb{Q}, s)}_{1}+\underbrace{\operatorname{ord}_{s=1} L\left(E_{D} / \mathbb{Q}, s\right)}_{0} .
$$

In particular

$$
L^{\prime}(E / K, 1) \neq 0 \xrightarrow{\text { G-Z }} \hat{h}\left(P_{K}\right) \neq 0 \xrightarrow{\mathrm{~K}} E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K} .
$$

Fact: complex conjugation of K acts like $-\epsilon$ on $E(K)_{/ \text {tors }}$.
Thus $E(\mathbb{Q})_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$, so $\mathrm{rk}_{\mathbb{Z}} E(\mathbb{Q})=1 . \square$

The main result

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{\text {/tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.

The main result

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{\text {/tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.
Theorem (main result ${ }^{2}$)
Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K) .
$$

Then $\operatorname{Sel}(K, E[\ell])=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)$.

The main result

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{\text {/tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.
Theorem (main result ${ }^{2}$)
Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then $\operatorname{Sel}(K, E[\ell])=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)$.
Proof (of Kolyvagin).
For any $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \rightarrow \amalg(K, E)[\ell] \rightarrow 0 .
$$

The main result

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.
Theorem (main result ${ }^{2}$)
Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then $\operatorname{Sel}(K, E[\ell])=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)$.
Proof (of Kolyvagin).
For any $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \rightarrow \amalg(K, E)[\ell] \rightarrow 0 .
$$

Choose any $\ell \in \mathbb{N}$ such that K and $\mathbb{Q}(E[\ell])$ are linearly disjoint over \mathbb{Q}.

The main result

Theorem (Kolyvagin, 1989)
If $\widehat{h}\left(P_{K}\right) \neq 0$, then $E(K)_{/ \text {tors }}=\mathbb{Z} \cdot \frac{1}{n} P_{K}$.
Theorem (main result ${ }^{2}$)
Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

$$
\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \cong \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right), \quad P_{K} \notin \ell E(K)
$$

Then $\operatorname{Sel}(K, E[\ell])=\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)$.
Proof (of Kolyvagin).
For any $\ell \in \mathbb{N}$, there is a short exact sequence

$$
0 \rightarrow E(K) / \ell E(K) \xrightarrow{\delta} \operatorname{Sel}(K, E[\ell]) \rightarrow \amalg(K, E)[\ell] \rightarrow 0 .
$$

Choose any $\ell \in \mathbb{N}$ such that K and $\mathbb{Q}(E[\ell])$ are linearly disjoint over \mathbb{Q}. Then $E(K)[\ell]=0$, so that $\operatorname{dim}_{\mathbb{F}_{\ell}} E(K) / \ell E(K)=\operatorname{rk}_{\mathbb{Z}} E(K)$.

[^0]
Selmer structures

Selmer groups can be defined in general.

Selmer structures

Selmer groups can be defined in general.
Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L / K)]$-module.

Selmer structures

Selmer groups can be defined in general.
Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L / K)]$-module.
Example
Let $M=E[\ell]$.

Selmer structures

Selmer groups can be defined in general.
Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L / K)]$-module.
Example
Let $M=E[\ell]$.

- Fact: Galois equivariance of ℓ-Weil pairing implies M is non-scalar.

Selmer structures

Selmer groups can be defined in general.
Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L / K)]$-module.
Example
Let $M=E[\ell]$.

- Fact: Galois equivariance of ℓ-Weil pairing implies M is non-scalar.
- Fact: surjective ℓ-adic representation implies M is simple.

Selmer structures

Selmer groups can be defined in general.
Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L / K)]$-module.
Example
Let $M=E[\ell]$.

- Fact: Galois equivariance of ℓ-Weil pairing implies M is non-scalar.
- Fact: surjective ℓ-adic representation implies M is simple.

By inflation-restriction, there is a short exact sequence

$$
0 \rightarrow H^{1}\left(G_{v}^{\mathrm{ur}}, M^{l_{v}}\right) \rightarrow H^{1}\left(K_{v}, M\right) \rightarrow H^{1}\left(I_{v}, M\right)^{G_{v}^{\mathrm{ur}}} \rightarrow 0
$$

Selmer structures

Selmer groups can be defined in general.
Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L / K)]$-module.

Example

Let $M=E[\ell]$.

- Fact: Galois equivariance of ℓ-Weil pairing implies M is non-scalar.
- Fact: surjective ℓ-adic representation implies M is simple.

By inflation-restriction, there is a short exact sequence

$$
0 \rightarrow H^{1}\left(G_{v}^{\mathrm{ur}}, M^{l_{v}}\right) \rightarrow H^{1}\left(K_{v}, M\right) \rightarrow H^{1}\left(I_{v}, M\right)^{G_{v}^{\mathrm{ur}}} \rightarrow 0
$$

Example
Let $v \nmid \ell$ have good reduction. Then there is a short exact sequence

$$
0 \rightarrow E\left(K_{v}\right) / \ell E\left(K_{v}\right) \xrightarrow{\delta} H^{1}\left(K_{v}, M\right) \rightarrow H^{1}\left(K_{v}, E\right)[\ell] \rightarrow 0 .
$$

Selmer structures

A Selmer structure on M is an assignment

$$
v \longmapsto H_{f}^{1}\left(K_{v}, M\right) \subseteq H^{1}\left(K_{v}, M\right),
$$

such that $H_{f}^{1}\left(K_{v}, M\right)=H^{1}\left(G_{v}^{\mathrm{ur}}, M^{l v}\right)$ for almost all places v of K.

Selmer structures

A Selmer structure on M is an assignment

$$
v \longmapsto H_{f}^{1}\left(K_{v}, M\right) \subseteq H^{1}\left(K_{v}, M\right),
$$

such that $H_{f}^{1}\left(K_{v}, M\right)=H^{1}\left(G_{v}^{\text {ur }}, M^{l v}\right)$ for almost all places v of K. Its singular quotient $H_{s}^{1}\left(K_{v}, M\right)$ sits in

$$
0 \rightarrow H_{f}^{1}\left(K_{v}, M\right) \rightarrow H^{1}\left(K_{v}, M\right) \xrightarrow{(\cdot)^{s}} H_{s}^{1}\left(K_{v}, M\right) \rightarrow 0
$$

Selmer structures

A Selmer structure on M is an assignment

$$
v \longmapsto H_{f}^{1}\left(K_{v}, M\right) \subseteq H^{1}\left(K_{v}, M\right),
$$

such that $H_{f}^{1}\left(K_{v}, M\right)=H^{1}\left(G_{v}^{\text {ur }}, M^{\ell v}\right)$ for almost all places v of K. Its singular quotient $H_{s}^{1}\left(K_{v}, M\right)$ sits in

$$
0 \rightarrow H_{f}^{1}\left(K_{v}, M\right) \rightarrow H^{1}\left(K_{v}, M\right) \xrightarrow{(\cdot)^{s}} H_{s}^{1}\left(K_{v}, M\right) \rightarrow 0
$$

Example

- The unramified Selmer structure has

$$
H_{f}^{1}\left(K_{v}, M\right):=H^{1}\left(G_{v}^{\mathrm{ur}}, M^{I_{v}}\right), \quad H_{s}^{1}\left(K_{v}, M\right):=H^{1}\left(I_{v}, M\right)^{G_{v}^{\mathrm{ur}}}
$$

Selmer structures

A Selmer structure on M is an assignment

$$
v \longmapsto H_{f}^{1}\left(K_{v}, M\right) \subseteq H^{1}\left(K_{v}, M\right),
$$

such that $H_{f}^{1}\left(K_{v}, M\right)=H^{1}\left(G_{v}^{\text {ur }}, M^{l v}\right)$ for almost all places v of K. Its singular quotient $H_{s}^{1}\left(K_{v}, M\right)$ sits in

$$
0 \rightarrow H_{f}^{1}\left(K_{v}, M\right) \rightarrow H^{1}\left(K_{v}, M\right) \xrightarrow{(\cdot)^{s}} H_{s}^{1}\left(K_{v}, M\right) \rightarrow 0
$$

Example

- The unramified Selmer structure has

$$
H_{f}^{1}\left(K_{v}, M\right):=H^{1}\left(G_{v}^{\mathrm{ur}}, M^{I_{v}}\right), \quad H_{s}^{1}\left(K_{v}, M\right):=H^{1}\left(I_{v}, M\right)^{G_{v}^{\mathrm{ur}}}
$$

- The geometric Selmer structure has

$$
H_{f}^{1}\left(K_{v}, M\right):=E\left(K_{v}\right) / \ell E\left(K_{v}\right), \quad H_{s}^{1}\left(K_{v}, M\right):=H^{1}\left(K_{v}, E\right)[\ell] .
$$

Selmer structures

There is a localisation map

$$
(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}\left(K_{v}, M\right)
$$

Selmer structures

There is a localisation map

$$
(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}\left(K_{v}, M\right)
$$

- The classical Selmer group $\operatorname{Sel}(K, M)$ sits in

$$
0 \rightarrow \operatorname{Sel}(K, M) \rightarrow H^{1}(K, M) \xrightarrow{\prod_{v}(\cdot)_{v}^{s}} \prod_{v} H_{s}^{1}\left(K_{v}, M\right)
$$

Selmer structures

There is a localisation map

$$
(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}\left(K_{v}, M\right) .
$$

- The classical Selmer group $\operatorname{Sel}(K, M)$ sits in

$$
0 \rightarrow \operatorname{Sel}(K, M) \rightarrow H^{1}(K, M) \xrightarrow{\prod_{v}(\cdot)_{v}^{s}} \prod_{v} H_{s}^{1}\left(K_{v}, M\right)
$$

- The relaxed Selmer group $\operatorname{Sel}^{S}(K, M)$ sits in

$$
0 \rightarrow \operatorname{Sel}(K, M) \rightarrow \operatorname{Sel}^{S}(K, M) \xrightarrow{\prod_{v \in S}(\cdot)^{s}} \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, M\right) .
$$

Selmer structures

There is a localisation map

$$
(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}\left(K_{v}, M\right) .
$$

- The classical Selmer group $\operatorname{Sel}(K, M)$ sits in

$$
0 \rightarrow \operatorname{Sel}(K, M) \rightarrow H^{1}(K, M) \xrightarrow{\prod_{v}(\cdot)_{v}^{s}} \prod_{v} H_{s}^{1}\left(K_{v}, M\right)
$$

- The relaxed Selmer group $\operatorname{Sel}^{S}(K, M)$ sits in

$$
0 \rightarrow \operatorname{Sel}(K, M) \rightarrow \operatorname{Sel}^{S}(K, M) \xrightarrow{\prod_{v \in S}(\cdot)^{s}} \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, M\right) .
$$

- The restricted Selmer $\operatorname{group}_{\operatorname{Sel}}^{S}(K, M)$ sits in

$$
0 \rightarrow \operatorname{Sel}_{S}(K, M) \rightarrow \operatorname{Sel}(K, M) \xrightarrow{\Pi_{v \in S}(\cdot)_{v}} \bigoplus_{v \in S} H_{f}^{1}\left(K_{v}, M\right) .
$$

Application of Tate duality

Let S be a finite set of places of K. There are exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{Sel} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, M\right) \\
& 0 \rightarrow \mathrm{Sel}_{S} \longrightarrow \mathrm{Sel} \longrightarrow \bigoplus_{v \in S} H_{f}^{1}\left(K_{v}, M\right)
\end{aligned}
$$

Application of Tate duality

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There are exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \\
& 0 \rightarrow \mathrm{Sel}_{S} \longrightarrow \mathrm{Sel}_{S^{\prime}} \rightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{f}^{1}\left(K_{v}, M\right)
\end{aligned}
$$

Application of Tate duality

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There are exact sequences

$$
0 \rightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right)
$$

$$
\bigoplus_{v \in S \backslash S^{\prime}} H_{f}^{1}\left(K_{v}, M\right)^{\vee} \rightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0
$$

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
\begin{aligned}
0 \rightarrow \mathrm{Sel}^{S^{\prime}} \rightarrow \mathrm{Sel}^{S} \longrightarrow & \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \\
& \bigoplus_{v \in S \backslash S^{\prime}} H_{f}^{1}\left(K_{v}, M\right)^{\vee} \rightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
\end{aligned}
$$

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
\begin{aligned}
0 \rightarrow \mathrm{Sel}^{S^{\prime}} \rightarrow \mathrm{Sel}^{S} \longrightarrow & \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \\
& \bigoplus_{v \in S \backslash S^{\prime}} H_{f}^{1}\left(K_{v}, M\right)^{\vee} \rightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \rightarrow \operatorname{Sel}_{S}^{\vee} \rightarrow 0 .
\end{aligned}
$$

Proof.
Local Tate duality gives a perfect pairing

$$
H_{s}^{1}\left(K_{v}, M\right) \times H_{f}^{1}\left(K_{v}, M\right) \rightarrow \mathbb{F}_{\ell} .
$$

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Proof.
Local Tate duality gives a perfect pairing

$$
H_{s}^{1}\left(K_{v}, M\right) \times H_{f}^{1}\left(K_{v}, M\right) \rightarrow \mathbb{F}_{\ell} .
$$

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Proof.
Local Tate duality gives a perfect pairing

$$
H_{s}^{1}\left(K_{v}, M\right) \times H_{f}^{1}\left(K_{v}, M\right) \rightarrow \mathbb{F}_{\ell} .
$$

By the snake lemma, may assume that S and S^{\prime} contain all bad places.

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{I^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Proof.
Local Tate duality gives a perfect pairing

$$
H_{s}^{1}\left(K_{v}, M\right) \times H_{f}^{1}\left(K_{v}, M\right) \rightarrow \mathbb{F}_{\ell} .
$$

By the snake lemma, may assume that S and S^{\prime} contain all bad places. The Poitou-Tate exact sequence gives exactness at

$$
\mathrm{Sel}^{S} \rightarrow \bigoplus_{v \in S} H^{1}\left(K_{v}, M\right) \rightarrow \mathrm{Sel}^{S v}
$$

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{I^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Proof.
Local Tate duality gives a perfect pairing

$$
H_{s}^{1}\left(K_{v}, M\right) \times H_{f}^{1}\left(K_{v}, M\right) \rightarrow \mathbb{F}_{\ell} .
$$

By the snake lemma, may assume that S and S^{\prime} contain all bad places. The Poitou-Tate exact sequence gives exactness at

$$
\mathrm{Sel}^{S} \rightarrow \bigoplus_{v \in S} H^{1}\left(K_{v}, M\right) \rightarrow \mathrm{Sel}^{S v}
$$

Diagram chase. \square

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{\mathrm{I}^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Fact: complex conjugation of K respects the exact sequence.

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$
0 \rightarrow \mathrm{Sel}^{S^{\prime} \pm} \rightarrow \mathrm{Sel}^{S^{S}} \rightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right)^{ \pm} \rightarrow \operatorname{Sel}_{S^{\prime}}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$
0 \rightarrow \operatorname{Sel}^{S^{\prime} \pm} \rightarrow \mathrm{Sel}^{S^{S}} \rightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right)^{ \pm} \rightarrow \operatorname{Sel}_{S^{\prime}}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

Specialising to $S^{\prime}=\emptyset$ and $M=E[\ell]$,

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$
0 \rightarrow \operatorname{Sel}^{S^{\prime} \pm} \rightarrow \operatorname{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right)^{ \pm} \rightarrow \operatorname{Sel}_{S^{\prime}}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

Specialising to $S^{\prime}=\emptyset$ and $M=E[\ell]$,

$$
0 \rightarrow \operatorname{coker}\left(\operatorname{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}\right) \rightarrow \mathrm{Sel}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

Application of Tate duality

Proposition

Let $S^{\prime} \subseteq S$ be finite sets of places of K. There is an exact sequence

$$
0 \longrightarrow \mathrm{Sel}^{S^{\prime}} \longrightarrow \mathrm{Sel}^{S} \longrightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right) \longrightarrow \operatorname{Sel}_{S^{\prime}}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0
$$

Fact: complex conjugation of K respects the exact sequence. Thus

$$
0 \rightarrow \operatorname{Sel}^{S^{\prime} \pm} \rightarrow \operatorname{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S \backslash S^{\prime}} H_{s}^{1}\left(K_{v}, M\right)^{ \pm} \rightarrow \operatorname{Sel}_{S^{\prime}}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

Specialising to $S^{\prime}=\emptyset$ and $M=E[\ell]$,

$$
0 \rightarrow \operatorname{coker}\left(\operatorname{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}\right) \rightarrow \mathrm{Sel}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

Idea: choose appropriate S.

Application of Chebotarev density

Assume M is non-scalar and simple.

Application of Chebotarev density

Assume M is non-scalar and simple.
Let $K(E[\ell]) \subseteq L \subseteq L^{\prime}$ be finite extensions, and fix $\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)^{-}$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}\left(L^{\prime} / \mathbb{Q}\right)$.

Application of Chebotarev density

Assume M is non-scalar and simple.
Let $K(E[\ell]) \subseteq L \subseteq L^{\prime}$ be finite extensions, and fix $\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)^{-}$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}\left(L^{\prime} / \mathbb{Q}\right)$.
Lemma
There is a finite set S of inert primes of K / \mathbb{Q} such that

1. $\left(\frac{p}{L^{\prime} / \mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Application of Chebotarev density

Assume M is non-scalar and simple.
Let $K(E[\ell]) \subseteq L \subseteq L^{\prime}$ be finite extensions, and fix $\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)^{-}$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}\left(L^{\prime} / \mathbb{Q}\right)$.

Lemma

There is a finite set S of inert primes of K / \mathbb{Q} such that

1. $\left(\frac{p}{L^{\prime} / \mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Proof.

- Chebotarev density gives S satisfying 1 .

Application of Chebotarev density

Assume M is non-scalar and simple.
Let $K(E[\ell]) \subseteq L \subseteq L^{\prime}$ be finite extensions, and fix $\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)^{-}$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}\left(L^{\prime} / \mathbb{Q}\right)$.

Lemma

There is a finite set S of inert primes of K / \mathbb{Q} such that

1. $\left(\frac{p}{L^{\prime} / \mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Proof.

- Chebotarev density gives S satisfying 1 .
- Fact: non-scalar and simple imply $2 . \square$

Application of Chebotarev density

Assume M is non-scalar and simple.
Let $K(E[\ell]) \subseteq L \subseteq L^{\prime}$ be finite extensions, and fix $\sigma \in \operatorname{Gal}\left(L^{\prime} / L\right)^{-}$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}\left(L^{\prime} / \mathbb{Q}\right)$.
Lemma
There is a finite set S of inert primes of K / \mathbb{Q} such that

1. $\left(\frac{p}{L^{\prime} / \mathbb{Q}}\right) \sim \sigma \tau$ for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Proof.

- Chebotarev density gives S satisfying 1 .
- Fact: non-scalar and simple imply 2. \square

Idea: choose appropriate L^{\prime} / L to bound $\operatorname{Sel}_{S}^{ \pm}$.

Heegner points of higher conductors

Both $\mathrm{Sel}^{S \pm}$ and $H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}$in

$$
0 \rightarrow \operatorname{coker}\left(\operatorname{Sel}^{S^{ \pm}} \rightarrow \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}\right) \rightarrow \operatorname{Sel}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

are generated by some $c(n) \in H^{1}(K, E[\ell])^{ \pm}$indexed by $n \in \mathbb{N}$.

Heegner points of higher conductors

Both $\mathrm{Sel}^{S \pm}$ and $H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}$in

$$
0 \rightarrow \operatorname{coker}\left(\operatorname{Sel}^{S^{ \pm}} \rightarrow \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}\right) \rightarrow \operatorname{Sel}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

are generated by some $c(n) \in H^{1}(K, E[\ell])^{ \pm}$indexed by $n \in \mathbb{N}$.
Each $c(n)$ is generated by a Heegner point of conductor n.

Heegner points of higher conductors

Both $\mathrm{Sel}^{S \pm}$ and $H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}$in

$$
0 \rightarrow \operatorname{coker}\left(\mathrm{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}\right) \rightarrow \mathrm{Sel}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

are generated by some $c(n) \in H^{1}(K, E[\ell])^{ \pm}$indexed by $n \in \mathbb{N}$.
Each $c(n)$ is generated by a Heegner point of conductor n.

conductor 1
ring of integers \mathcal{O}_{K}
Hilbert class field K^{1}
Heegner point $P_{1} \in E\left(K^{1}\right)$

Heegner points of higher conductors

Both $\mathrm{Sel}^{S \pm}$ and $H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}$in

$$
0 \rightarrow \operatorname{coker}\left(\mathrm{Sel}^{S \pm} \rightarrow \bigoplus_{v \in S} H_{s}^{1}\left(K_{v}, E[\ell]\right)^{ \pm}\right) \rightarrow \mathrm{Sel}^{\vee \pm} \rightarrow \operatorname{Sel}_{S}^{\vee \pm} \rightarrow 0
$$

are generated by some $c(n) \in H^{1}(K, E[\ell])^{ \pm}$indexed by $n \in \mathbb{N}$.
Each $c(n)$ is generated by a Heegner point of conductor n.

conductor 1	conductor n
ring of integers \mathcal{O}_{K}	order $\mathcal{O}_{K, n}$
Hilbert class field K^{1}	ring class field K^{n}
Heegner point $P_{1} \in E\left(K^{1}\right)$	Heegner point $P_{n} \in E\left(K^{n}\right)$

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.
Consider only the square-free $n \in \mathbb{N}$ (coprime to $N D \ell$) such that:

$$
p \mid n \quad \Longrightarrow \quad p \text { is inert in } K .
$$

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.
Consider only the square-free $n \in \mathbb{N}$ (coprime to $N D \ell$) such that:

$$
p \mid n \quad \Longrightarrow \quad p \text { is inert in } K .
$$

By class field theory,

$$
\operatorname{Gal}\left(K^{n} / K^{1}\right) \cong \mathrm{Cl}\left(\mathcal{O}_{K, n}\right) / \mathrm{Cl}\left(\mathcal{O}_{K}\right) \cong\left(\mathcal{O}_{K} / n\right)^{\times} /(\mathbb{Z} / n)^{\times} .
$$

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.
Consider only the square-free $n \in \mathbb{N}$ (coprime to $N D \ell$) such that:

$$
p \mid n \quad \Longrightarrow \quad p \text { is inert in } K .
$$

By class field theory,

$$
\operatorname{Gal}\left(K^{n} / K^{1}\right) \cong \operatorname{Cl}\left(\mathcal{O}_{K, n}\right) / \mathrm{Cl}\left(\mathcal{O}_{K}\right) \cong\left(\mathcal{O}_{K} / n\right)^{\times} /(\mathbb{Z} / n)^{\times} .
$$

Since n is square-free,

$$
\operatorname{Gal}\left(K^{n} / K^{1}\right) \cong \prod_{p \mid n} \operatorname{Gal}\left(K^{p} / K^{1}\right)
$$

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.
Consider only the square-free $n \in \mathbb{N}$ (coprime to $N D \ell$) such that:

$$
p \mid n \quad \Longrightarrow \quad p \text { is inert in } K .
$$

By class field theory,

$$
\operatorname{Gal}\left(K^{n} / K^{1}\right) \cong \mathrm{Cl}\left(\mathcal{O}_{K, n}\right) / \mathrm{Cl}\left(\mathcal{O}_{K}\right) \cong\left(\mathcal{O}_{K} / n\right)^{\times} /(\mathbb{Z} / n)^{\times} .
$$

Since n is square-free,

$$
\operatorname{Gal}\left(K^{n} / K^{1}\right) \cong \prod_{p \mid n} \operatorname{Gal}\left(K^{p} / K^{1}\right)
$$

Since $p \mid n$ is inert in K,

$$
\operatorname{Gal}\left(K^{p} / K^{1}\right)=\mathbb{Z} /(p+1) \cdot \sigma_{p} .
$$

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.
Consider only the square-free $n \in \mathbb{N}$ (coprime to $N D \ell$) such that:

$$
p \mid n \quad \Longrightarrow \quad p \text { is inert in } K .
$$

Proposition (AX3)
Let $n=p q$. Then

1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{p q}=a_{p} P_{q}$ in $E\left(K^{q}\right)$, and
2. $\overline{P_{p q}}=\overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K q / K}\right) P_{q}}$ in $\bar{E}\left(\mathbb{F}_{\mathfrak{p}_{q}}\right)$.

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.
Consider only the square-free $n \in \mathbb{N}$ (coprime to $N D \ell$) such that:

$$
p \mid n \quad \Longrightarrow \quad p \text { is inert in } K .
$$

Proposition (AX3)
Let $n=p q$. Then

1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{p q}=a_{p} P_{q}$ in $E\left(K^{q}\right)$, and
2. $\overline{P_{p q}}=\overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K q}\right) P_{q}}$ in $\bar{E}\left(\mathbb{F}_{\mathfrak{p}_{\mathfrak{q}}}\right)$.

Proof (sketch of 1).
If $H_{p}: \operatorname{Div}\left(X_{0}(N)\right) \rightarrow \operatorname{Div}\left(X_{0}(N)\right)$ is the Hecke correspondence, then

$$
\sum_{i=0}^{p} \sigma_{p}^{i} x_{p q}=H_{p} x_{q} .
$$

Heegner points of higher conductors

The Heegner points $P_{n} \in E\left(K^{n}\right)$ satisfy "Euler system" relations.
Consider only the square-free $n \in \mathbb{N}$ (coprime to $N D \ell$) such that:

$$
p \mid n \quad \Longrightarrow \quad p \text { is inert in } K .
$$

Proposition (AX3)
Let $n=p q$. Then

1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{p q}=a_{p} P_{q}$ in $E\left(K^{q}\right)$, and
2. $\overline{P_{p q}}=\overline{\left(\frac{\mathfrak{p}_{\mathfrak{q}}}{K^{q} / K}\right) P_{q}}$ in $\bar{E}\left(\mathbb{F}_{\mathfrak{p}_{q}}\right)$.

Proof (sketch of 1).
If $H_{p}: \operatorname{Div}\left(X_{0}(N)\right) \rightarrow \operatorname{Div}\left(X_{0}(N)\right)$ is the Hecke correspondence, then

$$
\sum_{i=0}^{p} \sigma_{p}^{i} x_{p q}=H_{p} x_{q} .
$$

By E-S theory, $\phi\left(H_{p} D\right)=a_{p} \phi(D)$ for any $D \in \operatorname{Div}\left(X_{0}(N)\right)$.

Derived Kolyvagin classes

Given $P_{n} \in E\left(K^{n}\right)$, how to derive $c(n) \in H^{1}(K, E[\ell])$?

Derived Kolyvagin classes

Given $P_{n} \in E\left(K^{n}\right)$, how to derive $c(n) \in H^{1}(K, E[\ell])$?
Define a "trace"

$$
T_{n}:=\sum_{\tau \in T} \tau \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{n} / K\right)\right],
$$

where T is a set of coset representatives for $\operatorname{Gal}\left(K^{n} / K^{1}\right) \leq \operatorname{Gal}\left(K^{n} / K\right)$.

Derived Kolyvagin classes

Given $P_{n} \in E\left(K^{n}\right)$, how to derive $c(n) \in H^{1}(K, E[\ell])$?
Define a "trace"

$$
T_{n}:=\sum_{\tau \in T} \tau \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{n} / K\right)\right],
$$

where T is a set of coset representatives for $\operatorname{Gal}\left(K^{n} / K^{1}\right) \leq \operatorname{Gal}\left(K^{n} / K\right)$.
Define the Kolyvagin derivative

$$
D_{n}:=\prod_{p \mid n} D_{p} \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{n} / K^{1}\right)\right],
$$

where D_{p} is any solution to $\left(\sigma_{p}-1\right) D_{p}=p+1-T_{p}$ in $\mathbb{Z}\left[\operatorname{Gal}\left(K^{n} / K\right)\right]$.

Derived Kolyvagin classes

Given $P_{n} \in E\left(K^{n}\right)$, how to derive $c(n) \in H^{1}(K, E[\ell])$?
Define a "trace"

$$
T_{n}:=\sum_{\tau \in T} \tau \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{n} / K\right)\right],
$$

where T is a set of coset representatives for $\operatorname{Gal}\left(K^{n} / K^{1}\right) \leq \operatorname{Gal}\left(K^{n} / K\right)$.
Define the Kolyvagin derivative

$$
D_{n}:=\prod_{p \mid n} D_{p} \in \mathbb{Z}\left[\operatorname{Gal}\left(K^{n} / K^{1}\right)\right],
$$

where D_{p} is any solution to $\left(\sigma_{p}-1\right) D_{p}=p+1-T_{p}$ in $\mathbb{Z}\left[\operatorname{Gal}\left(K^{n} / K\right)\right]$.
Define

$$
\mathcal{P}_{n}:=\left[T_{n} D_{n} P_{n}\right] \in E\left(K^{n}\right) / \ell E\left(K^{n}\right)
$$

Derived Kolyvagin classes

Define $\mathcal{P}_{n}:=\left[T_{n} D_{n} P_{n}\right] \in E\left(K^{n}\right) / \ell E\left(K^{n}\right)$.

Derived Kolyvagin classes

Define $\mathcal{P}_{n}:=\left[T_{n} D_{n} P_{n}\right] \in E\left(K^{n}\right) / \ell E\left(K^{n}\right)$.
Fact: By AX3,

- \mathcal{P}_{n} is fixed by $G_{n}:=\operatorname{Gal}\left(K^{n} / K\right)$, and
- \mathcal{P}_{n} lies in the $\epsilon_{n}:=-\epsilon \cdot(-1)^{\#\{p \mid n\}}$ eigenspace.

Derived Kolyvagin classes

Define $\mathcal{P}_{n}:=\left[T_{n} D_{n} P_{n}\right] \in E\left(K^{n}\right) / \ell E\left(K^{n}\right)$.
Fact: By AX3,

- \mathcal{P}_{n} is fixed by $G_{n}:=\operatorname{Gal}\left(K^{n} / K\right)$, and
- \mathcal{P}_{n} lies in the $\epsilon_{n}:=-\epsilon \cdot(-1)^{\#\{p \mid n\}}$ eigenspace.

There is an exact diagram

$$
\begin{gathered}
0 \rightarrow H_{f}^{1}(K, E[\ell])^{\epsilon_{n}} \xrightarrow{\delta} H^{1}(K, E[\ell])^{\epsilon_{n}} \longrightarrow H_{s}^{1}(K, E[\ell])^{\epsilon_{n}} \longrightarrow 0 \\
\downarrow \\
\downarrow \\
\downarrow \rightarrow H_{f}^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}} \xrightarrow[\delta_{n}]{ } H^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}} \rightarrow H_{s}^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}}
\end{gathered}
$$

Derived Kolyvagin classes

Define $\mathcal{P}_{n}:=\left[T_{n} D_{n} P_{n}\right] \in E\left(K^{n}\right) / \ell E\left(K^{n}\right)$.
Fact: By AX3,

- \mathcal{P}_{n} is fixed by $G_{n}:=\operatorname{Gal}\left(K^{n} / K\right)$, and
- \mathcal{P}_{n} lies in the $\epsilon_{n}:=-\epsilon \cdot(-1)^{\#\{p \mid n\}}$ eigenspace.

There is an exact diagram

$$
\begin{aligned}
& 0 \\
& \downarrow^{\text {inf }_{n}} \\
& 0 \longrightarrow H_{f}^{1}(K, E[\ell])^{\epsilon_{n}} \xrightarrow{\delta} H^{1}(K, E[\ell])^{\epsilon_{n}} \longrightarrow H_{s}^{1}(K, E[\ell])^{\epsilon_{n}} \longrightarrow 0 \\
& \downarrow \mathrm{res}_{n} \quad \downarrow \\
& 0 \rightarrow H_{f}^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}}{\overrightarrow{\delta_{n}}} H^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}} \rightarrow H_{s}^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}} \\
& \downarrow \operatorname{tra}_{n} \\
& 0
\end{aligned}
$$

Derived Kolyvagin classes

Define $\mathcal{P}_{n}:=\left[T_{n} D_{n} P_{n}\right] \in E\left(K^{n}\right) / \ell E\left(K^{n}\right)$.
Fact: By AX3,

- \mathcal{P}_{n} is fixed by $G_{n}:=\operatorname{Gal}\left(K^{n} / K\right)$, and
- \mathcal{P}_{n} lies in the $\epsilon_{n}:=-\epsilon \cdot(-1)^{\#\{p \mid n\}}$ eigenspace.

There is an exact diagram

$$
\begin{aligned}
& 0 \\
& \downarrow^{\text {inf }_{n}} \\
& 0 \longrightarrow H_{f}^{1}(K, E[\ell])^{\epsilon_{n}} \xrightarrow{\delta} H^{1}(K, E[\ell])^{\epsilon_{n}} \longrightarrow H_{s}^{1}(K, E[\ell])^{\epsilon_{n}} \longrightarrow 0 \\
& \downarrow \mathrm{res}_{n} \quad \downarrow \\
& 0 \rightarrow H_{f}^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}} \vec{\delta}_{n} H^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}} \rightarrow H_{s}^{1}\left(K^{n}, E[\ell]\right)^{G_{n} \epsilon_{n}} \\
& \downarrow \text { tra }_{n}
\end{aligned}
$$

Define $c(n) \in H^{1}(K, E[\ell])$ by

$$
\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)
$$

Derived Kolyvagin classes

Define $c(n) \in H^{1}(K, E[\ell])$ by $\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)$.

Derived Kolyvagin classes

Define $c(n) \in H^{1}(K, E[\ell])$ by $\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)$.

Lemma

1. If $v \nmid n$, then $c(n)_{v}^{s}=0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p \mid n\} \epsilon_{n}}$).
2. If $v \mid n$, then $c(n)_{v}^{s}=0$ if and only if $\mathcal{P}_{n / v} \in \ell E\left(K_{v}\right)$.

Derived Kolyvagin classes

Define $c(n) \in H^{1}(K, E[\ell])$ by $\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)$.

Lemma

1. If $v \nmid n$, then $c(n)_{v}^{s}=0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p \mid n\} \epsilon_{n}}$).
2. If $v \mid n$, then $c(n)_{v}^{s}=0$ if and only if $\mathcal{P}_{n / v} \in \ell E\left(K_{v}\right)$.

Proof (sketch of 1).
Assume $v \nmid \ell$ has good reduction.

Derived Kolyvagin classes

Define $c(n) \in H^{1}(K, E[\ell])$ by $\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)$.

Lemma

1. If $v \nmid n$, then $c(n)_{v}^{s}=0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p \mid n\} \epsilon_{n}}$).
2. If $v \mid n$, then $c(n)_{v}^{s}=0$ if and only if $\mathcal{P}_{n / v} \in \ell E\left(K_{v}\right)$.

Proof (sketch of 1).
Assume $v \nmid \ell$ has good reduction. Then

$$
\begin{aligned}
& 0 \longrightarrow \underset{\downarrow}{\longrightarrow} \underset{\downarrow}{\longrightarrow}{\underset{\downarrow}{1}\left(K_{v}, E[\ell]\right)}_{\longrightarrow}^{\longrightarrow} H^{1}\left(K_{v}, E[\ell]\right) \xrightarrow{(\cdot)^{s}} \underset{\downarrow}{\longrightarrow} H_{s}^{1}\left(K^{n}, E[\ell]\right) . \\
& 0 \longrightarrow H_{f}^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[\delta_{n}]{\longrightarrow} H^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[(\cdot)^{s}]{\longrightarrow} H_{s}^{1}\left(K_{v}^{n}, E[\ell]\right)
\end{aligned}
$$

Derived Kolyvagin classes

Define $c(n) \in H^{1}(K, E[\ell])$ by $\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)$.

Lemma

1. If $v \nmid n$, then $c(n)_{v}^{s}=0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p \mid n\} \epsilon_{n}}$).
2. If $v \mid n$, then $c(n)_{v}^{s}=0$ if and only if $\mathcal{P}_{n / v} \in \ell E\left(K_{v}\right)$.

Proof (sketch of 1).
Assume $v \nmid \ell$ has good reduction. Then

$$
\begin{aligned}
& 0 \longrightarrow H_{f}^{1}\left(K_{v}, E[\ell]\right) \longrightarrow H^{1}\left(K_{v}, E[\ell]\right) \xrightarrow{\downarrow} \xrightarrow{\downarrow \text { res }_{n}} \xrightarrow{\stackrel{(\cdot)^{s}}{H}} \underset{\downarrow}{\operatorname{Hom}\left(I_{v}, E[\ell]\right)} \\
& 0 \longrightarrow H_{f}^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[\delta_{n}]{\longrightarrow} H^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[(\cdot)^{s}]{\longrightarrow} \operatorname{Hom}\left(I_{v}^{n}, E[\ell]\right)
\end{aligned}
$$

Derived Kolyvagin classes

Define $c(n) \in H^{1}(K, E[\ell])$ by $\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)$.

Lemma

1. If $v \nmid n$, then $c(n)_{v}^{s}=0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p \mid n\} \epsilon_{n}}$).
2. If $v \mid n$, then $c(n)_{v}^{s}=0$ if and only if $\mathcal{P}_{n / v} \in \ell E\left(K_{v}\right)$.

Proof (sketch of 1).
Assume $v \nmid \ell$ has good reduction. Then K_{v}^{n} / K_{v} is unramified, so

$$
\begin{aligned}
& 0 \longrightarrow \underset{\substack{ \\
\downarrow}}{H_{f}^{1}\left(K_{v}, E[\ell]\right)} \longrightarrow \underset{\substack{ \\
\text { res }_{n}}}{H^{1}\left(K_{v}, E[\ell]\right)} \xrightarrow{(\cdot)^{s}} \operatorname{Hom}\left(I_{v}, E[\ell]\right) \\
& 0 \longrightarrow H_{f}^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[\delta_{n}]{\longrightarrow} H^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[(\cdot)^{s}]{\longrightarrow} \operatorname{Hom}\left(I_{v}, E[\ell]\right)
\end{aligned}
$$

Derived Kolyvagin classes

Define $c(n) \in H^{1}(K, E[\ell])$ by $\operatorname{res}_{n}(c(n))=\delta_{n}\left(\mathcal{P}_{n}\right)$.

Lemma

1. If $v \nmid n$, then $c(n)_{v}^{s}=0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p \mid n\} \epsilon_{n}}$).
2. If $v \mid n$, then $c(n)_{v}^{s}=0$ if and only if $\mathcal{P}_{n / v} \in \ell E\left(K_{v}\right)$.

Proof (sketch of 1).
Assume $v \nmid \ell$ has good reduction. Then K_{v}^{n} / K_{v} is unramified, so

$$
\begin{aligned}
& 0 \longrightarrow H_{f}^{1}\left(K_{v}, E[\ell]\right) \longrightarrow H^{1}\left(K_{v}, E[\ell]\right) \xrightarrow{(\cdot)^{s}} \operatorname{Hom}\left(I_{v}, E[\ell]\right) \\
& 0 \longrightarrow H_{f}^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[\delta_{n}]{\longrightarrow} H^{1}\left(K_{v}^{n}, E[\ell]\right) \xrightarrow[(\cdot)^{s}]{\longrightarrow} \operatorname{Hom}\left(I_{v}, E[\ell]\right)
\end{aligned}
$$

Thus $\left(\operatorname{res}_{n}(c(n))_{v}\right)^{s}=0$ by exactness. \square

Computing the Selmer group

Compute Sel^{ϵ} and $\mathrm{Sel}^{-\epsilon}$ separately.

Computing the Selmer group

Compute Sel^{ϵ} and $\mathrm{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

$$
0 \rightarrow \operatorname{coker}\left(\operatorname{Sel}^{S \pm} \rightarrow \bigoplus_{p \in S} H_{s}^{1}\left(K_{p}, E[\ell]\right)^{ \pm}\right) \rightarrow \operatorname{Sel}^{ \pm} \rightarrow \operatorname{Sel}_{S}^{ \pm} \rightarrow 0
$$

Computing the Selmer group

Compute Sel^{ϵ} and $\mathrm{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

$$
0 \rightarrow \operatorname{coker}\left(\operatorname{Sel}^{S \pm} \rightarrow \bigoplus_{p \in S} H_{s}^{1}\left(K_{p}, E[\ell]\right)^{ \pm}\right) \rightarrow \operatorname{Sel}^{ \pm} \rightarrow \operatorname{Sel}_{S}^{ \pm} \rightarrow 0
$$

Restricted:

- Choose L^{\prime} / L to get S such that $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Computing the Selmer group

Compute Sel^{ϵ} and $\mathrm{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

$$
0 \rightarrow \operatorname{coker}\left(\mathrm{Sel}^{S \pm} \rightarrow \bigoplus_{p \in S} H_{s}^{1}\left(K_{p}, E[\ell]\right)^{ \pm}\right) \rightarrow \mathrm{Sel}^{ \pm} \rightarrow \operatorname{Sel}_{S}^{ \pm} \rightarrow 0 .
$$

Restricted:

- Choose L^{\prime} / L to get S such that $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.
- Compute $H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Computing the Selmer group

Compute Sel^{ϵ} and $\mathrm{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

$$
0 \rightarrow \operatorname{coker}\left(\mathrm{Sel}^{S \pm} \rightarrow \bigoplus_{p \in S} H_{s}^{1}\left(K_{p}, E[\ell]\right)^{ \pm}\right) \rightarrow \mathrm{Sel}^{ \pm} \rightarrow \operatorname{Sel}_{S}^{ \pm} \rightarrow 0
$$

Restricted:

- Choose L^{\prime} / L to get S such that $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.
- Compute $H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Relaxed:

- Fact: each $H_{s}^{1}\left(K_{p}, E[\ell]\right)^{ \pm}$is one-dimensional.

Computing the Selmer group

Compute Sel^{ϵ} and $\mathrm{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

$$
0 \rightarrow \operatorname{coker}\left(\mathrm{Sel}^{S \pm} \rightarrow \bigoplus_{p \in S} H_{s}^{1}\left(K_{p}, E[\ell]\right)^{ \pm}\right) \rightarrow \mathrm{Sel}^{ \pm} \rightarrow \operatorname{Sel}_{S}^{ \pm} \rightarrow 0 .
$$

Restricted:

- Choose L^{\prime} / L to get S such that $\operatorname{Sel}_{S}^{ \pm} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.
- Compute $H^{1}\left(L^{\prime} / K, E[\ell]\right)^{ \pm}$.

Relaxed:

- Fact: each $H_{s}^{1}\left(K_{p}, E[\ell]\right)^{ \pm}$is one-dimensional.
- Show $c(n) \in \operatorname{Sel}^{S \epsilon_{n}}$ is non-zero in $H_{s}^{1}\left(K_{p}, E[\ell]\right)$ for some n.

Computing the Selmer group

Compute Sel^{ϵ}.

Computing the Selmer group

Compute Sel^{ϵ}.
Let $L:=K(E[\ell])$ and $L^{\prime}:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$.

Computing the Selmer group

Compute Sel^{ϵ}.
Let $L:=K(E[\ell])$ and $L^{\prime}:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$. Get S such that

$$
\operatorname{Sel}_{S}^{\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{\epsilon}
$$

Computing the Selmer group

Compute Sel^{ϵ}.
Let $L:=K(E[\ell])$ and $L^{\prime}:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$. Get S such that

$$
\operatorname{Sel}_{S}^{\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)}_{-\epsilon} .
$$

Computing the Selmer group

Compute Sel^{ϵ}.
Let $L:=K(E[\ell])$ and $L^{\prime}:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$. Get S such that

$$
\operatorname{Sel}_{S}^{\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)}_{-\epsilon} .
$$

By Frobenius computations,

$$
\forall p \in S, \quad c(p) \in \mathrm{Sel}^{S \epsilon}, \quad c(p)_{p}^{S} \neq 0
$$

Computing the Selmer group

Compute Sel^{ϵ}.
Let $L:=K(E[\ell])$ and $L^{\prime}:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$. Get S such that

$$
\operatorname{Sel}_{S}^{\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)}_{-\epsilon} .
$$

By Frobenius computations,

$$
\forall p \in S, \quad c(p) \in \mathrm{Sel}^{S \epsilon}, \quad c(p)_{p}^{S} \neq 0
$$

Thus

$$
0 \rightarrow \underbrace{\operatorname{coker}\left(\operatorname{Sel}^{S_{\epsilon}} \rightarrow \bigoplus_{p \in S} H_{s}^{1}\left(K_{p}, E[\ell]\right)^{\epsilon}\right)}_{0} \rightarrow \operatorname{Sel}^{\epsilon} \rightarrow \underbrace{\operatorname{Sel}_{S}^{\epsilon}}_{0} \rightarrow 0 .
$$

Computing the Selmer group

Compute $\mathrm{Sel}^{-\epsilon}$.

Computing the Selmer group

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.

Computing the Selmer group

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.
Let $L:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$ and $L^{\prime}:=\operatorname{ker}(G L \xrightarrow{c(p)} E[\ell])$.

Computing the Selmer group

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.
Let $L:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$ and $L^{\prime}:=\operatorname{ker}\left(G_{L} \xrightarrow{c(p)} E[\ell]\right)$. Get S^{\prime} such that

$$
\operatorname{Sel}_{S^{\prime}}^{-\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{-\epsilon}
$$

Computing the Selmer group

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.
Let $L:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$ and $L^{\prime}:=\operatorname{ker}\left(G_{L} \xrightarrow{c(p)} E[\ell]\right)$. Get S^{\prime} such that

$$
\operatorname{Sel}_{S^{\prime}}^{-\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)}_{-\epsilon} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}_{\epsilon} .
$$

Computing the Selmer group

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.
Let $L:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$ and $L^{\prime}:=\operatorname{ker}\left(G_{L} \xrightarrow{c(p)} E[\ell]\right)$. Get S^{\prime} such that

$$
\operatorname{Sel}_{S^{\prime}}^{-\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)}_{-\epsilon} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}_{\epsilon} .
$$

By Frobenius computations,

$$
\forall q \in S^{\prime}, \quad c(p q) \in \mathrm{Sel}^{S^{\prime}-\epsilon}, \quad c(p q)_{q}^{s} \neq 0
$$

Computing the Selmer group

Compute $\mathrm{Sel}^{-\epsilon}$. Fix $p \in S$.
Let $L:=K\left(E[\ell], \frac{1}{\ell} P_{K}\right)$ and $L^{\prime}:=\operatorname{ker}\left(G_{L} \xrightarrow{c(p)} E[\ell]\right)$. Get S^{\prime} such that

$$
\operatorname{Sel}_{S^{\prime}}^{-\epsilon} \subseteq H^{1}\left(L^{\prime} / K, E[\ell]\right)^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta\left(P_{K}\right)}_{-\epsilon} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}_{\epsilon} .
$$

By Frobenius computations,

$$
\forall q \in S^{\prime}, \quad c(p q) \in \operatorname{Sel}^{S^{\prime}-\epsilon}, \quad c(p q)_{q}^{s} \neq 0
$$

Thus

Thank you!

[^0]: ${ }^{2}$ Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves

