London School of Geometry and Number Theory

London Junior Number Theory Seminar

The Euler system of Heegner points ¹

David Ang

Tuesday, 10 May 2022

¹Victor Kolyvagin, 1989. Euler Systems, in *Grothendieck Festschrift* $\langle \Box \rangle$ $\langle \Box$

Overview

Introduction

- From Gross-Zagier to Kolyvagin
- Application to BSD
- The main result
- Generalised Selmer groups
 - Selmer structures
 - Application of Tate duality
 - Application of Chebotarev density
- The Euler system of Heegner points
 - Heegner points of higher conductors
 - Derived Kolyvagin classes
 - Computing the Selmer group

Assumptions

Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi : X_0(N) \twoheadrightarrow E$.

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi : X_0(N) \twoheadrightarrow E$.
- Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with Heegner condition: ²

$$p \mid N \implies p \text{ is split in } K.$$

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi : X_0(N) \twoheadrightarrow E$.
- Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with Heegner condition: ²

$$p \mid N \implies p \text{ is split in } K.$$

• An ideal
$$\mathcal{N}_{\mathcal{K}} \trianglelefteq \mathcal{O}_{\mathcal{K}}$$
 such that $\mathcal{O}_{\mathcal{K}}/\mathcal{N}_{\mathcal{K}} \cong \mathbb{Z}/N$.

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi : X_0(N) \twoheadrightarrow E$.
- Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with Heegner condition: ²

$$p \mid N \implies p \text{ is split in } K.$$

- An ideal $\mathcal{N}_{\mathcal{K}} \trianglelefteq \mathcal{O}_{\mathcal{K}}$ such that $\mathcal{O}_{\mathcal{K}}/\mathcal{N}_{\mathcal{K}} \cong \mathbb{Z}/N$.
- A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_{\mathcal{K}} \to \mathbb{C}/\mathcal{N}_{\mathcal{K}}^{-1}$.

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi : X_0(N) \twoheadrightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with Heegner condition: ²

$$p \mid N \implies p \text{ is split in } K.$$

- An ideal $\mathcal{N}_{\mathcal{K}} \trianglelefteq \mathcal{O}_{\mathcal{K}}$ such that $\mathcal{O}_{\mathcal{K}}/\mathcal{N}_{\mathcal{K}} \cong \mathbb{Z}/N$.
- A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_{\mathcal{K}} \to \mathbb{C}/\mathcal{N}_{\mathcal{K}}^{-1}$.
- A point $x_1 \in X_0(N)$

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- ▶ Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi : X_0(N) \twoheadrightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with Heegner condition: ²

$$p \mid N \implies p \text{ is split in } K.$$

- An ideal $\mathcal{N}_{\mathcal{K}} \trianglelefteq \mathcal{O}_{\mathcal{K}}$ such that $\mathcal{O}_{\mathcal{K}}/\mathcal{N}_{\mathcal{K}} \cong \mathbb{Z}/N$.
- A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_{\mathcal{K}} \to \mathbb{C}/\mathcal{N}_{\mathcal{K}}^{-1}$.
- A point $x_1 \in X_0(N)(K^1)$ by CM theory.

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \twoheadrightarrow E$.
- ▶ Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with Heegner condition: ²

$$p \mid N \implies p \text{ is split in } K.$$

- An ideal $\mathcal{N}_{\mathcal{K}} \trianglelefteq \mathcal{O}_{\mathcal{K}}$ such that $\mathcal{O}_{\mathcal{K}}/\mathcal{N}_{\mathcal{K}} \cong \mathbb{Z}/N$.
- A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_{\mathcal{K}} \to \mathbb{C}/\mathcal{N}_{\mathcal{K}}^{-1}$.
- A point $x_1 \in X_0(N)(K^1)$ by CM theory.
- A Heegner point $P_1 := \phi(x_1) \in E(K^1)$.

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

Assumptions

- Elliptic curve E/\mathbb{Q} with modular parameterisation $\phi: X_0(N) \twoheadrightarrow E$.
- Imaginary quadratic field $K = \mathbb{Q}(\sqrt{-D})$ with Heegner condition: ²

$$p \mid N \implies p \text{ is split in } K.$$

Consequences

- An ideal $\mathcal{N}_{\mathcal{K}} \trianglelefteq \mathcal{O}_{\mathcal{K}}$ such that $\mathcal{O}_{\mathcal{K}}/\mathcal{N}_{\mathcal{K}} \cong \mathbb{Z}/N$.
- A cyclic *N*-isogeny $\mathbb{C}/\mathcal{O}_{\mathcal{K}} \to \mathbb{C}/\mathcal{N}_{\mathcal{K}}^{-1}$.
- A point $x_1 \in X_0(N)(K^1)$ by CM theory.
- A Heegner point $P_1 := \phi(x_1) \in E(K^1)$.
- A basic Heegner point

$$P_{\mathcal{K}} := \sum_{\sigma \in \operatorname{Gal}(\mathcal{K}^1/\mathcal{K})} \sigma(P_1) \in E(\mathcal{K}).$$

²assume End(E) $\cong \mathbb{Z}$ and $D \neq 1, 3$

<ロト < 回 ト < 巨 ト < 巨 ト ミ つ Q (~ 10/115

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986)

There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \hat{h}(P_K)$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986) There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \hat{h}(P_K)$. Corollary If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) \geq 1$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986) There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \hat{h}(P_K)$. Corollary

If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989) If $\hat{h}(P_{K}) \neq 0$, then $E(K)_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_{K}$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986) There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \hat{h}(P_K)$. Corollary

If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989) If $\hat{h}(P_K) \neq 0$, then $E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$. Corollary If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) = 1$.

Recall the Gross-Zagier formula.

Theorem (Gross-Zagier, 1986) There is some $c \neq 0$ such that $L'(E/K, 1) = c \cdot \hat{h}(P_K)$. Corollary

If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) \geq 1$.

Theorem (Kolyvagin, 1989) If $\hat{h}(P_K) \neq 0$, then $E(K)_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$. Corollary If $L'(E/K, 1) \neq 0$, then $\operatorname{rk}_{\mathbb{Z}} E(K) = 1$.

This *almost* proves weak BSD for analytic rank $\leq 1!$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\Lambda(E/\mathbb{Q},s) = \epsilon \cdot \Lambda(E/\mathbb{Q},2-s)$$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\begin{split} & \Lambda(E/\mathbb{Q},s) = \epsilon \cdot \Lambda(E/\mathbb{Q},2-s) \\ & \xrightarrow{\frac{d^k}{ds^k} \Big|_{s=1}} \qquad L^{(k)}(E/\mathbb{Q},1) = \epsilon \cdot (-1)^k \cdot L^{(k)}(E/\mathbb{Q},1) \end{split}$$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\Lambda(E/\mathbb{Q},s) = \epsilon \cdot \Lambda(E/\mathbb{Q},2-s)$$

$$\stackrel{\frac{d^k}{ds^k}|_{s=1}}{\longrightarrow} \qquad L^{(k)}(E/\mathbb{Q},1) = \epsilon \cdot (-1)^k \cdot L^{(k)}(E/\mathbb{Q},1).$$

Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \begin{cases} 0 & \epsilon = +\\ 1 & \epsilon = - \end{cases}$$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$$

Proof.

Consider the functional equation

$$\Lambda(E/\mathbb{Q},s) = \epsilon \cdot \Lambda(E/\mathbb{Q},2-s)$$

$$\stackrel{\frac{d^k}{ds^k}|_{s=1}}{\longrightarrow} \qquad L^{(k)}(E/\mathbb{Q},1) = \epsilon \cdot (-1)^k \cdot L^{(k)}(E/\mathbb{Q},1).$$

Then

$$\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \begin{cases} 0 & \epsilon = +\\ 1 & \epsilon = - \end{cases}$$

Consider cases for ϵ .

<ロト < 部ト < 差ト < 差ト 差 の Q (~ 20/115

.

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$.

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} L(E/K, s) = \underbrace{\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s)}_{1} + \underbrace{\operatorname{ord}_{s=1} L(E_D/\mathbb{Q}, s)}_{0}$$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} L(E/K, s) = \underbrace{\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s)}_{1} + \underbrace{\operatorname{ord}_{s=1} L(E_D/\mathbb{Q}, s)}_{0}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

23 / 115

In particular

 $L'(E/K,1) \neq 0$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} L(E/K, s) = \underbrace{\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s)}_{1} + \underbrace{\operatorname{ord}_{s=1} L(E_D/\mathbb{Q}, s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0 \stackrel{\text{G-Z}}{\Longrightarrow} \widehat{h}(P_K) \neq 0$$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} L(E/K, s) = \underbrace{\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s)}_{1} + \underbrace{\operatorname{ord}_{s=1} L(E_D/\mathbb{Q}, s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0 \stackrel{\text{G-Z}}{\Longrightarrow} \widehat{h}(P_K) \neq 0 \stackrel{K}{\Longrightarrow} E(K)_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K.$$

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} L(E/K, s) = \underbrace{\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s)}_{1} + \underbrace{\operatorname{ord}_{s=1} L(E_D/\mathbb{Q}, s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0 \stackrel{\text{G-Z}}{\Longrightarrow} \widehat{h}(P_K) \neq 0 \stackrel{K}{\Longrightarrow} E(K)_{/\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K.$$

<u>Fact</u>: complex conjugation of K acts like $-\epsilon$ on $E(K)_{\text{tors}}$.

Theorem (Weak BSD for analytic rank ≤ 1) Assume $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) \leq 1$. Then

 $\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s) = \operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}).$

Proof (for $\epsilon = -$).

<u>Fact</u>: There is Heegner $K = \mathbb{Q}(\sqrt{-D})$ such that $L(E_D/\mathbb{Q}, 1) \neq 0$. Then

$$\operatorname{ord}_{s=1} L(E/K, s) = \underbrace{\operatorname{ord}_{s=1} L(E/\mathbb{Q}, s)}_{1} + \underbrace{\operatorname{ord}_{s=1} L(E_D/\mathbb{Q}, s)}_{0}.$$

In particular

$$L'(E/K,1) \neq 0 \stackrel{\text{G-Z}}{\Longrightarrow} \widehat{h}(P_K) \neq 0 \stackrel{K}{\Longrightarrow} E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K.$$

<u>Fact</u>: complex conjugation of K acts like $-\epsilon$ on $E(K)_{\text{tors}}$.

Thus $E(\mathbb{Q})_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_K$, so $\operatorname{rk}_{\mathbb{Z}} E(\mathbb{Q}) = 1$.

27 / 115

Theorem (Kolyvagin, 1989) If $\hat{h}(P_{K}) \neq 0$, then $E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_{K}$.

Theorem (Kolyvagin, 1989) If $\hat{h}(P_{K}) \neq 0$, then $E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_{K}$.

Theorem (main result ²)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

 $\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_\ell), \qquad P_K \notin \ell E(K).$

Then $\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_{K}).$

²Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves $\langle \mathcal{D} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle$

Theorem (Kolyvagin, 1989) If $\hat{h}(P_{K}) \neq 0$, then $E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_{K}$.

Theorem (main result ²)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

 $\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_\ell), \qquad P_K \notin \ell E(K).$

Then $\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_{\kappa}).$

Proof (of Kolyvagin).

For any $\ell \in \mathbb{N},$ there is a short exact sequence

$$0 \to E(\mathcal{K})/\ell E(\mathcal{K}) \xrightarrow{\delta} \mathrm{Sel}(\mathcal{K}, E[\ell]) \to \mathrm{III}(\mathcal{K}, E)[\ell] \to 0.$$

²Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves $\langle \mathcal{D} \rangle \langle \mathbb{R} \rangle$

Theorem (Kolyvagin, 1989) If $\hat{h}(P_{K}) \neq 0$, then $E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_{K}$.

Theorem (main result ²)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

```
\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_\ell), \qquad P_K \notin \ell E(K).
```

Then $\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_{\kappa}).$

Proof (of Kolyvagin).

For any $\ell \in \mathbb{N},$ there is a short exact sequence

$$0 \to E(\mathcal{K})/\ell E(\mathcal{K}) \xrightarrow{\delta} \mathrm{Sel}(\mathcal{K}, E[\ell]) \to \mathrm{III}(\mathcal{K}, E)[\ell] \to 0.$$

Choose any $\ell \in \mathbb{N}$ such that K and $\mathbb{Q}(E[\ell])$ are linearly disjoint over \mathbb{Q} .

²Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$

Theorem (Kolyvagin, 1989) If $\hat{h}(P_{K}) \neq 0$, then $E(K)_{\text{tors}} = \mathbb{Z} \cdot \frac{1}{n} P_{K}$.

Theorem (main result ²)

Let $\ell \in \mathbb{N}$ be an odd prime of good reduction such that

```
\operatorname{Gal}(\mathbb{Q}(E[\ell])/\mathbb{Q}) \cong \operatorname{GL}_2(\mathbb{F}_\ell), \qquad P_K \notin \ell E(K).
```

Then $\operatorname{Sel}(K, E[\ell]) = \mathbb{F}_{\ell} \cdot \delta(P_{\kappa}).$

Proof (of Kolyvagin).

For any $\ell \in \mathbb{N},$ there is a short exact sequence

$$0 \to E({\cal K})/\ell E({\cal K}) \xrightarrow{\delta} {\rm Sel}({\cal K}, E[\ell]) \to {\rm III}({\cal K}, E)[\ell] \to 0.$$

Choose any $\ell \in \mathbb{N}$ such that K and $\mathbb{Q}(E[\ell])$ are linearly disjoint over \mathbb{Q} . Then $E(K)[\ell] = 0$, so that $\dim_{\mathbb{F}_{\ell}} E(K)/\ell E(K) = \operatorname{rk}_{\mathbb{Z}} E(K)$. \Box

²Benedict Gross, 1991. Kolyvagin's work on modular elliptic curves $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$ $\langle \square \rangle$

Selmer groups can be defined in general.

Selmer groups can be defined in general.

Let *M* be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Selmer groups can be defined in general.

Let M be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module. Example

Let $M = E[\ell]$.

Selmer groups can be defined in general.

Let *M* be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

Fact: Galois equivariance of ℓ -Weil pairing implies *M* is non-scalar.
Selmer groups can be defined in general.

Let *M* be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

- ▶ <u>Fact</u>: Galois equivariance of ℓ -Weil pairing implies *M* is non-scalar.
- <u>Fact</u>: surjective ℓ -adic representation implies *M* is simple.

Selmer groups can be defined in general.

Let *M* be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

- ▶ <u>Fact</u>: Galois equivariance of ℓ -Weil pairing implies *M* is non-scalar.
- <u>Fact</u>: surjective ℓ -adic representation implies *M* is simple.

By inflation-restriction, there is a short exact sequence

$$0 \to H^1(G_{\nu}^{\mathrm{ur}}, M^{I_{\nu}}) \to H^1(K_{\nu}, M) \to H^1(I_{\nu}, M)^{G_{\nu}^{\mathrm{ur}}} \to 0.$$

・ロト ・ 日 ト ・ 日 ト ・ 日

38 / 115

Selmer groups can be defined in general.

Let *M* be a (non-scalar, simple) self-dual $\mathbb{F}_{\ell}[\operatorname{Gal}(L/K)]$ -module.

Example

Let $M = E[\ell]$.

- ▶ <u>Fact</u>: Galois equivariance of ℓ -Weil pairing implies *M* is non-scalar.
- <u>Fact</u>: surjective ℓ -adic representation implies *M* is simple.

By inflation-restriction, there is a short exact sequence

$$0 \to H^1(G_v^{\mathrm{ur}}, M^{I_v}) \to H^1(K_v, M) \to H^1(I_v, M)^{G_v^{\mathrm{ur}}} \to 0.$$

Example

Let $v \nmid \ell$ have good reduction. Then there is a short exact sequence

$$0 \to E(K_{\nu})/\ell E(K_{\nu}) \xrightarrow{\delta} H^{1}(K_{\nu}, M) \to H^{1}(K_{\nu}, E)[\ell] \to 0.$$

・ロト ・ 日 ト ・ 日 ト ・ 日

A **Selmer structure** on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H^1_f(K_v, M) = H^1(G_v^{\mathrm{ur}}, M^{I_v})$ for almost all places v of K.

A Selmer structure on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{ur}, M^{l_v})$ for almost all places v of K. Its **singular quotient** $H_s^1(K_v, M)$ sits in

$$0 \to H^1_f(K_{\nu}, M) \to H^1(K_{\nu}, M) \xrightarrow{(\cdot)^s} H^1_s(K_{\nu}, M) \to 0.$$

A Selmer structure on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{ur}, M^{l_v})$ for almost all places v of K. Its **singular quotient** $H_s^1(K_v, M)$ sits in

$$0 \to H^1_f(K_{\nu}, M) \to H^1(K_{\nu}, M) \xrightarrow{(\cdot)^s} H^1_s(K_{\nu}, M) \to 0.$$

Example

► The unramified Selmer structure has

$$H^1_f(K_v, M) := H^1(G^{\mathrm{ur}}_v, M^{I_v}), \qquad H^1_s(K_v, M) := H^1(I_v, M)^{G^{\mathrm{ur}}_v}.$$

A **Selmer structure** on M is an assignment

$$v \longmapsto H^1_f(K_v, M) \subseteq H^1(K_v, M),$$

such that $H_f^1(K_v, M) = H^1(G_v^{ur}, M^{l_v})$ for almost all places v of K. Its **singular quotient** $H_s^1(K_v, M)$ sits in

$$0 \to H^1_f(K_{\nu}, M) \to H^1(K_{\nu}, M) \xrightarrow{(\cdot)^s} H^1_s(K_{\nu}, M) \to 0.$$

Example

The unramified Selmer structure has

$$H^1_f(K_v, M) := H^1(G^{\mathrm{ur}}_v, M^{I_v}), \qquad H^1_s(K_v, M) := H^1(I_v, M)^{G^{\mathrm{ur}}_v}.$$

The geometric Selmer structure has

$$H^1_f(K_v, M) := E(K_v)/\ell E(K_v), \qquad H^1_s(K_v, M) := H^1(K_v, E)[\ell].$$

There is a localisation map

$$(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}(K_{v}, M).$$

There is a localisation map

$$(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}(K_{v}, M).$$

▶ The **classical** Selmer group Sel(K, M) sits in

$$0 \to \operatorname{Sel}(K, M) \to H^1(K, M) \xrightarrow{\prod_v (\cdot)_v^s} \prod_v H^1_s(K_v, M).$$

There is a localisation map

$$(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}(K_{v}, M).$$

▶ The **classical** Selmer group Sel(K, M) sits in

$$0 \to \operatorname{Sel}(K, M) \to H^1(K, M) \xrightarrow{\prod_v (\cdot)_v^s} \prod_v H^1_s(K_v, M).$$

• The **relaxed** Selmer group $\operatorname{Sel}^{S}(K, M)$ sits in

$$0 \to \operatorname{Sel}(K, M) \to \operatorname{Sel}^{S}(K, M) \xrightarrow{\prod_{v \in S} (\cdot)_{v}^{s}} \bigoplus_{v \in S} H^{1}_{s}(K_{v}, M).$$

There is a localisation map

$$(\cdot)_{v}: H^{1}(K, M) \rightarrow H^{1}(K_{v}, M).$$

▶ The **classical** Selmer group Sel(K, M) sits in

$$0 \to \operatorname{Sel}(K, M) \to H^1(K, M) \xrightarrow{\prod_v (\cdot)_v^s} \prod_v H^1_s(K_v, M).$$

► The **relaxed** Selmer group $\operatorname{Sel}^{S}(K, M)$ sits in $0 \to \operatorname{Sel}(K, M) \to \operatorname{Sel}^{S}(K, M) \xrightarrow{\prod_{v \in S} (\cdot)_{v}^{s}} \bigoplus_{v \in S} H_{s}^{1}(K_{v}, M).$

• The **restricted** Selmer group $Sel_{\mathcal{S}}(K, M)$ sits in

$$0 \to \operatorname{Sel}_{\mathcal{S}}(K, M) \to \operatorname{Sel}(K, M) \xrightarrow{\prod_{v \in \mathcal{S}} (\cdot)_v} \bigoplus_{v \in \mathcal{S}} H^1_f(K_v, M).$$

Let S be a finite set of places of K. There are exact sequences

$$0 \longrightarrow \operatorname{Sel} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S} H^{1}_{s}(K_{v}, M)$$

$$0 \longrightarrow \operatorname{Sel}_{\mathcal{S}} \longrightarrow \operatorname{Sel} \longrightarrow \bigoplus_{v \in \mathcal{S}} H^1_f(K_v, M)$$

Let $S' \subseteq S$ be finite sets of places of K. There are exact sequences

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M)$$

$$0 \longrightarrow \operatorname{Sel}_{S} \longrightarrow \operatorname{Sel}_{S'} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_f(K_v, M)$$

Let $S' \subseteq S$ be finite sets of places of K. There are exact sequences

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{\nu \in S \setminus S'} H^1_s(K_{\nu}, M)$$

$$\bigoplus_{\nu\in S\setminus S'}H^1_f(K_{\nu},M)^{\vee}\to \operatorname{Sel}_{S'}^{\vee}\to \operatorname{Sel}_S^{\vee}\to 0.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$\begin{split} 0 &\to \operatorname{Sel}^{S'} \to \operatorname{Sel}^{S} \longrightarrow \bigoplus_{\nu \in S \setminus S'} H^{1}_{s}(K_{\nu}, M) \\ & \bigoplus_{\nu \in S \setminus S'} H^{1}_{f}(K_{\nu}, M)^{\vee} \to \operatorname{Sel}_{S'}^{\vee} \to \operatorname{Sel}_{S}^{\vee} \to 0. \end{split}$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v, M) imes H^1_f(K_v, M) o \mathbb{F}_\ell.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v, M) imes H^1_f(K_v, M) o \mathbb{F}_\ell.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v, M) imes H^1_f(K_v, M) o \mathbb{F}_\ell.$$

By the snake lemma, may assume that S and S' contain all bad places.

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v, M) imes H^1_f(K_v, M) o \mathbb{F}_\ell.$$

By the snake lemma, may assume that S and S' contain all bad places. The Poitou-Tate exact sequence gives exactness at

$$\operatorname{Sel}^{\mathsf{S}} \to \bigoplus_{v \in \mathsf{S}} H^1(K_v, M) \to \operatorname{Sel}^{\mathsf{S} \vee}$$

・ロト・日ト・ヨト・ヨト ヨークへで
55/115

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

Proof.

Local Tate duality gives a perfect pairing

$$H^1_s(K_v, M) \times H^1_f(K_v, M) \to \mathbb{F}_\ell.$$

By the snake lemma, may assume that S and S' contain all bad places. The Poitou-Tate exact sequence gives exactness at

$$\operatorname{Sel}^{\mathcal{S}} \to \bigoplus_{v \in \mathcal{S}} H^1(K_v, M) \to \operatorname{Sel}^{\mathcal{S} \vee}.$$

Diagram chase. 🗆

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

<u>Fact</u>: complex conjugation of K respects the exact sequence.

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

<u>Fact</u>: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{\nu \in S \setminus S'} H^1_s(K_\nu, M)^{\pm} \to \operatorname{Sel}_{S'}^{\vee \pm} \to \operatorname{Sel}_S^{\vee \pm} \to 0.$$

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

<u>Fact</u>: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{\nu \in S \setminus S'} H^1_s(K_\nu, M)^{\pm} \to \operatorname{Sel}_{S'}^{\vee \pm} \to \operatorname{Sel}_S^{\vee \pm} \to 0.$$

Specialising to $S' = \emptyset$ and $M = E[\ell]$,

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{\nu \in S \setminus S'} H^1_s(K_{\nu}, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

<u>Fact</u>: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{\nu \in S \setminus S'} H^1_s(K_\nu, M)^\pm \to \operatorname{Sel}_{S'}^{\vee\pm} \to \operatorname{Sel}_S^{\vee\pm} \to 0.$$

Specialising to $S' = \emptyset$ and $M = E[\ell]$,

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\nu \in \mathcal{S}} H^1_{\mathcal{S}}(\mathcal{K}_{\nu}, \mathcal{E}[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}_{\mathcal{S}}^{\vee \pm} \to 0.$$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 の 9 0 0 60 / 115

Proposition

Let $S' \subseteq S$ be finite sets of places of K. There is an exact sequence

$$0 \longrightarrow \operatorname{Sel}^{S'} \longrightarrow \operatorname{Sel}^{S} \longrightarrow \bigoplus_{v \in S \setminus S'} H^1_s(K_v, M) \longrightarrow \operatorname{Sel}_{S'}^{\vee} \longrightarrow \operatorname{Sel}_{S}^{\vee} \longrightarrow 0.$$

<u>Fact</u>: complex conjugation of K respects the exact sequence. Thus

$$0 \to \operatorname{Sel}^{S'\pm} \to \operatorname{Sel}^{S\pm} \to \bigoplus_{\nu \in S \setminus S'} H^1_s(K_\nu, M)^\pm \to \operatorname{Sel}_{S'}^{\vee\pm} \to \operatorname{Sel}_S^{\vee\pm} \to 0.$$

Specialising to $S' = \emptyset$ and $M = E[\ell]$,

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S}\pm} \to \bigoplus_{\nu \in \mathcal{S}} H^1_{\mathcal{S}}(K_{\nu}, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}_{\mathcal{S}}^{\vee \pm} \to 0.$$

<u>Idea</u>: choose appropriate *S*.

Assume M is non-scalar and simple.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

1.
$$\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$$
 for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

1.
$$\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$$
 for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

Proof.

Chebotarev density gives S satisfying 1.

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

1.
$$\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$$
 for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

Proof.

- Chebotarev density gives *S* satisfying 1.
- ▶ <u>Fact</u>: non-scalar and simple imply 2. □

Assume M is non-scalar and simple.

Let $K(E[\ell]) \subseteq L \subseteq L'$ be finite extensions, and fix $\sigma \in \operatorname{Gal}(L'/L)^-$. Choose a lift of complex conjugation $\tau \in \operatorname{Gal}(L'/\mathbb{Q})$.

Lemma

There is a finite set S of inert primes of K/\mathbb{Q} such that

1.
$$\left(\frac{p}{L'/\mathbb{Q}}\right) \sim \sigma \tau$$
 for all $p \in S$, and
2. $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

Proof.

- Chebotarev density gives *S* satisfying 1.
- ▶ Fact: non-scalar and simple imply 2. □

<u>Idea</u>: choose appropriate L'/L to bound $\operatorname{Sel}_{S}^{\pm}$.

Both $\operatorname{Sel}^{S\pm}$ and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S} \pm} \to \bigoplus_{\nu \in \mathcal{S}} H^1_{\mathcal{S}}(\mathcal{K}_{\nu}, \mathcal{E}[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}_{\mathcal{S}}^{\vee \pm} \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Both Sel^{S±} and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S} \pm} \to \bigoplus_{\nu \in \mathcal{S}} H^1_{\mathcal{S}}(\mathcal{K}_{\nu}, \mathcal{E}[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}_{\mathcal{S}}^{\vee \pm} \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Each c(n) is generated by a **Heegner point of conductor** n.

Both $\operatorname{Sel}^{S\pm}$ and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S} \pm} \to \bigoplus_{v \in \mathcal{S}} H^1_{\mathcal{S}}(K_v, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}_{\mathcal{S}}^{\vee \pm} \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Each c(n) is generated by a **Heegner point of conductor** n.

conductor 1	
ring of integers $\mathcal{O}_{\mathcal{K}}$	
Hilbert class field K^1	
Heegner point $P_1 \in E(K^1)$	

・ロト ・ 日 ト ・ 日 ト ・ 日

Both $\operatorname{Sel}^{S\pm}$ and $H^1_s(K_v, E[\ell])^{\pm}$ in

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S} \pm} \to \bigoplus_{v \in \mathcal{S}} H^1_{\mathcal{S}}(\mathcal{K}_v, \mathcal{E}[\ell])^{\pm} \right) \to \operatorname{Sel}^{\vee \pm} \to \operatorname{Sel}_{\mathcal{S}}^{\vee \pm} \to 0$$

are generated by some $c(n) \in H^1(K, E[\ell])^{\pm}$ indexed by $n \in \mathbb{N}$.

Each c(n) is generated by a **Heegner point of conductor** n.

conductor 1	conductor <i>n</i>
ring of integers $\mathcal{O}_{\mathcal{K}}$	order $\mathcal{O}_{K,n}$
Hilbert class field K^1	ring class field K^n
Heegner point $P_1 \in E(K^1)$	Heegner point $P_n \in E(K^n)$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.
The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

By class field theory,

 $\operatorname{Gal}(\mathcal{K}^n/\mathcal{K}^1) \cong \operatorname{Cl}(\mathcal{O}_{\mathcal{K},n})/\operatorname{Cl}(\mathcal{O}_{\mathcal{K}}) \cong (\mathcal{O}_{\mathcal{K}}/n)^{\times}/(\mathbb{Z}/n)^{\times}.$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

By class field theory,

$$\operatorname{Gal}(\mathcal{K}^n/\mathcal{K}^1) \cong \operatorname{Cl}(\mathcal{O}_{\mathcal{K},n})/\operatorname{Cl}(\mathcal{O}_{\mathcal{K}}) \cong (\mathcal{O}_{\mathcal{K}}/n)^{\times}/(\mathbb{Z}/n)^{\times}.$$

Since *n* is square-free,

$$\operatorname{Gal}({\mathcal K}^n/{\mathcal K}^1)\cong\prod_{p\mid n}\operatorname{Gal}({\mathcal K}^p/{\mathcal K}^1).$$

75 / 115

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

By class field theory,

$$\operatorname{Gal}(\mathcal{K}^n/\mathcal{K}^1) \cong \operatorname{Cl}(\mathcal{O}_{\mathcal{K},n})/\operatorname{Cl}(\mathcal{O}_{\mathcal{K}}) \cong (\mathcal{O}_{\mathcal{K}}/n)^{\times}/(\mathbb{Z}/n)^{\times}.$$

Since *n* is square-free,

$$\operatorname{Gal}(\mathcal{K}^n/\mathcal{K}^1) \cong \prod_{p|n} \operatorname{Gal}(\mathcal{K}^p/\mathcal{K}^1).$$

Since $p \mid n$ is inert in K,

$$\operatorname{Gal}(K^p/K^1) = \mathbb{Z}/(p+1) \cdot \sigma_p.$$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

Proposition (AX3)

Let n = pq. Then 1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{pq} = a_{p} P_{q}$ in $E(K^{q})$, and 2. $\overline{P_{pq}} = \overline{\left(\frac{\mathfrak{p}_{q}}{K^{q}/K}\right) P_{q}}$ in $\overline{E}(\mathbb{F}_{\mathfrak{p}_{q}})$.

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

Proposition (AX3)

Let n = pq. Then 1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{pq} = a_{p} P_{q}$ in $E(K^{q})$, and 2. $\overline{P_{pq}} = \overline{\left(\frac{\mathfrak{p}_{q}}{K^{q}/K}\right) P_{q}}$ in $\overline{E}(\mathbb{F}_{\mathfrak{p}_{q}})$.

Proof (sketch of 1).

If H_p : $\operatorname{Div}(X_0(N)) \to \operatorname{Div}(X_0(N))$ is the Hecke correspondence, then

$$\sum_{i=0}^{p} \sigma_{p}^{i} x_{pq} = H_{p} x_{q}.$$

The Heegner points $P_n \in E(K^n)$ satisfy "Euler system" relations.

Consider only the square-free $n \in \mathbb{N}$ (coprime to $ND\ell$) such that:

 $p \mid n \implies p \text{ is inert in } K.$

Proposition (AX3)

Let n = pq. Then 1. $\sum_{i=0}^{p} \sigma_{p}^{i} P_{pq} = a_{p} P_{q}$ in $E(K^{q})$, and 2. $\overline{P_{pq}} = \overline{\left(\frac{\mathfrak{p}_{q}}{K^{q}/K}\right) P_{q}}$ in $\overline{E}(\mathbb{F}_{\mathfrak{p}_{q}})$.

Proof (sketch of 1).

If $H_p : \operatorname{Div}(X_0(N)) \to \operatorname{Div}(X_0(N))$ is the Hecke correspondence, then

$$\sum_{i=0}^{p} \sigma_{p}^{i} x_{pq} = H_{p} x_{q}.$$

By E-S theory, $\phi(H_pD) = a_p\phi(D)$ for any $D \in \text{Div}(X_0(N))$.

79 / 115

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Define a "trace"

$$T_n := \sum_{\tau \in T} \tau \in \mathbb{Z}[\operatorname{Gal}(K^n/K)],$$

where T is a set of coset representatives for $\operatorname{Gal}(K^n/K^1) \leq \operatorname{Gal}(K^n/K)$.

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Define a "trace"

$$T_n := \sum_{\tau \in T} \tau \in \mathbb{Z}[\operatorname{Gal}(K^n/K)],$$

where T is a set of coset representatives for $\operatorname{Gal}(K^n/K^1) \leq \operatorname{Gal}(K^n/K)$.

Define the Kolyvagin derivative

$$D_n := \prod_{p|n} D_p \in \mathbb{Z}[\operatorname{Gal}(K^n/K^1)],$$

where D_p is any solution to $(\sigma_p - 1)D_p = p + 1 - T_p$ in $\mathbb{Z}[\operatorname{Gal}(K^n/K)]$.

メロトメ 御 トメ ヨトメ ヨト ニヨー の

82 / 115

Given $P_n \in E(K^n)$, how to derive $c(n) \in H^1(K, E[\ell])$?

Define a "trace"

$$T_n := \sum_{\tau \in T} \tau \in \mathbb{Z}[\operatorname{Gal}(K^n/K)],$$

where T is a set of coset representatives for $\operatorname{Gal}(K^n/K^1) \leq \operatorname{Gal}(K^n/K)$.

Define the Kolyvagin derivative

$$D_n := \prod_{p|n} D_p \in \mathbb{Z}[\operatorname{Gal}(K^n/K^1)],$$

where D_p is any solution to $(\sigma_p - 1)D_p = p + 1 - T_p$ in $\mathbb{Z}[\operatorname{Gal}(K^n/K)]$.

Define

$$\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n).$$

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n)/\ell E(K^n)$.

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n)/\ell E(K^n)$.

Fact: By AX3,

•
$$\mathcal{P}_n$$
 is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and

•
$$\mathcal{P}_n$$
 lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n)/\ell E(K^n)$.

Fact: By AX3,

•
$$\mathcal{P}_n$$
 is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and

• \mathcal{P}_n lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

There is an exact diagram

$$\begin{array}{cccc} 0 \longrightarrow H^{1}_{f}(K, E[\ell])^{\epsilon_{n}} \stackrel{\delta}{\longrightarrow} H^{1}(K, E[\ell])^{\epsilon_{n}} \longrightarrow H^{1}_{s}(K, E[\ell])^{\epsilon_{n}} \longrightarrow 0 \\ & \downarrow & \downarrow \\ 0 \rightarrow H^{1}_{f}(K^{n}, E[\ell])^{G_{n}\epsilon_{n}} \xrightarrow{\delta_{n}} H^{1}(K^{n}, E[\ell])^{G_{n}\epsilon_{n}} \rightarrow H^{1}_{s}(K^{n}, E[\ell])^{G_{n}\epsilon_{n}} \end{array}$$

٠

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n) / \ell E(K^n)$.

Fact: By AX3,

• \mathcal{P}_n is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and

• \mathcal{P}_n lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

There is an exact diagram

٠

Define $\mathcal{P}_n := [T_n D_n P_n] \in E(K^n)/\ell E(K^n)$.

Fact: By AX3,

•
$$\mathcal{P}_n$$
 is fixed by $G_n := \operatorname{Gal}(K^n/K)$, and

• \mathcal{P}_n lies in the $\epsilon_n := -\epsilon \cdot (-1)^{\#\{p|n\}}$ eigenspace.

There is an exact diagram

Define $c(n) \in H^1(K, E[\ell])$ by

$$\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n).$$

<ロト<部ト<E>< E> E のQで 88/115

٠

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

1. If $v \nmid n$, then $c(n)_v^s = 0$ (i.e. $c(n) \in \operatorname{Sel}^{\{p|n\}\epsilon_n}$).

2. If $v \mid n$, then $c(n)_v^s = 0$ if and only if $\mathcal{P}_{n/v} \in \ell E(K_v)$.

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

If v ∤ n, then c(n)^s_v = 0 (i.e. c(n) ∈ Sel^{{p|n}ϵ_n}).
 If v | n, then c(n)^s_v = 0 if and only if P_{n/v} ∈ ℓE(K_v).

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction.

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

If v ∤ n, then c(n)^s_v = 0 (i.e. c(n) ∈ Sel^{{p|n}ϵ_n}).
 If v | n, then c(n)^s_v = 0 if and only if P_{n/v} ∈ ℓE(K_v).

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction. Then

$$\begin{array}{cccc} 0 & \longrightarrow & H^{1}_{f}(K_{\nu}, E[\ell]) & \longrightarrow & H^{1}(K_{\nu}, E[\ell]) & \stackrel{(\cdot)^{s}}{\longrightarrow} & H^{1}_{s}(K^{n}, E[\ell]) \\ & \downarrow & \downarrow^{\operatorname{res}_{n}} & \downarrow \\ 0 & \longrightarrow & H^{1}_{f}(K^{n}_{\nu}, E[\ell]) & \xrightarrow{\delta_{n}} & H^{1}(K^{n}_{\nu}, E[\ell]) & \xrightarrow{(\cdot)^{s}} & H^{1}_{s}(K^{n}_{\nu}, E[\ell]) \end{array}$$

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

If v ∤ n, then c(n)^s_v = 0 (i.e. c(n) ∈ Sel^{{p|n}ϵ_n}).
 If v | n, then c(n)^s_v = 0 if and only if P_{n/v} ∈ ℓE(K_v).

Proof (sketch of 1).

Assume $v \nmid \ell$ has good reduction. Then

$$\begin{array}{ccc} 0 & \longrightarrow & H^1_f(K_{\nu}, E[\ell]) & \longrightarrow & H^1(K_{\nu}, E[\ell]) & \stackrel{(\cdot)^s}{\longrightarrow} & \operatorname{Hom}(I_{\nu}, E[\ell]) \\ & \downarrow & \downarrow^{\operatorname{res}_n} & \downarrow \\ 0 & \longrightarrow & H^1_f(K_{\nu}^n, E[\ell]) & \xrightarrow{\delta_n} & H^1(K_{\nu}^n, E[\ell]) & \xrightarrow{(\cdot)^s} & \operatorname{Hom}(I_{\nu}^n, E[\ell]) \end{array}$$

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

If v ∤ n, then c(n)^s_v = 0 (i.e. c(n) ∈ Sel^{{p|n}ϵ_n}).
 If v | n, then c(n)^s_v = 0 if and only if P_{n/v} ∈ ℓE(K_v).

Proof (sketch of 1). Assume $v \nmid \ell$ has good reduction. Then K_v^n/K_v is unramified, so

$$\begin{array}{cccc} 0 & \longrightarrow & H^{1}_{f}(K_{v}, E[\ell]) & \longrightarrow & H^{1}(K_{v}, E[\ell]) & \stackrel{(\cdot)^{s}}{\longrightarrow} & \operatorname{Hom}(I_{v}, E[\ell]) \\ & \downarrow & \downarrow^{\operatorname{res}_{n}} & & || \\ 0 & \longrightarrow & H^{1}_{f}(K_{v}^{n}, E[\ell]) & \stackrel{}{\longrightarrow} & H^{1}(K_{v}^{n}, E[\ell]) & \stackrel{}{\longrightarrow} & \operatorname{Hom}(I_{v}, E[\ell]) \end{array}$$

Define $c(n) \in H^1(K, E[\ell])$ by $\operatorname{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$.

Lemma

If v ∤ n, then c(n)^s_v = 0 (i.e. c(n) ∈ Sel^{{p|n}ϵ_n}).
 If v | n, then c(n)^s_v = 0 if and only if P_{n/v} ∈ ℓE(K_v).

Proof (sketch of 1). Assume $v \nmid \ell$ has good reduction. Then K_v^n/K_v is unramified, so

Thus $(\operatorname{res}_n(c(n))_v)^s = 0$ by exactness. \Box

Compute Sel^ϵ and $\mathrm{Sel}^{-\epsilon}$ separately.

Compute $\operatorname{Sel}^{\epsilon}$ and $\operatorname{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

$$0 \to \operatorname{coker} \left(\operatorname{Sel}^{\mathcal{S} \pm} \to \bigoplus_{p \in \mathcal{S}} H^1_s(\mathcal{K}_p, E[\ell])^{\pm} \right) \to \operatorname{Sel}^{\pm} \to \operatorname{Sel}^{\pm}_{\mathcal{S}} \to 0.$$

Compute $\operatorname{Sel}^{\epsilon}$ and $\operatorname{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

Restricted:

• Choose L'/L to get S such that $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.

<ロト < 合ト < 言ト < 言ト こ の Q (~ 98 / 115

Compute $\operatorname{Sel}^{\epsilon}$ and $\operatorname{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

Restricted:

- Choose L'/L to get S such that $\operatorname{Sel}_S^{\pm} \subseteq H^1(L'/K, E[\ell])^{\pm}$.
- Compute $H^1(L'/K, E[\ell])^{\pm}$.

Compute $\operatorname{Sel}^{\epsilon}$ and $\operatorname{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

・ロト ・ 日 ト ・ 日 ト ・ 日

100 / 115

Restricted:

- Choose L'/L to get S such that $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.
- Compute $H^1(L'/K, E[\ell])^{\pm}$.

Relaxed:

• <u>Fact</u>: each $H^1_s(K_p, E[\ell])^{\pm}$ is one-dimensional.

Compute $\operatorname{Sel}^{\epsilon}$ and $\operatorname{Sel}^{-\epsilon}$ separately.

Use the short exact sequence

Restricted:

- Choose L'/L to get S such that $\operatorname{Sel}_{S}^{\pm} \subseteq H^{1}(L'/K, E[\ell])^{\pm}$.
- Compute $H^1(L'/K, E[\ell])^{\pm}$.

Relaxed:

- <u>Fact</u>: each $H^1_s(K_p, E[\ell])^{\pm}$ is one-dimensional.
- Show $c(n) \in \operatorname{Sel}^{S_{\epsilon_n}}$ is non-zero in $H^1_s(K_p, E[\ell])$ for some n.

Compute $\operatorname{Sel}^{\epsilon}$.

Compute $\operatorname{Sel}^{\epsilon}$.

Let $L := K(E[\ell])$ and $L' := K(E[\ell], \frac{1}{\ell}P_K)$.

Compute $\operatorname{Sel}^{\epsilon}$.

Let $L := \mathcal{K}(E[\ell])$ and $L' := \mathcal{K}(E[\ell], \frac{1}{\ell}P_{\mathcal{K}})$. Get S such that

 $\mathrm{Sel}^\epsilon_S\subseteq H^1(L'/K,E[\ell])^\epsilon$

Compute $\operatorname{Sel}^{\epsilon}$.

Let $L := \mathcal{K}(E[\ell])$ and $L' := \mathcal{K}(E[\ell], \frac{1}{\ell}P_{\mathcal{K}})$. Get S such that

$$\operatorname{Sel}_{\mathcal{S}}^{\epsilon} \subseteq H^{1}(L'/K, E[\ell])^{\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_{K})}_{-\epsilon}.$$

Compute $\operatorname{Sel}^{\epsilon}$.

Let
$$L := \mathcal{K}(E[\ell])$$
 and $L' := \mathcal{K}(E[\ell], \frac{1}{\ell}P_{\mathcal{K}})$. Get S such that
 $\operatorname{Sel}_{S}^{\epsilon} \subseteq H^{1}(L'/\mathcal{K}, E[\ell])^{\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_{\mathcal{K}})}_{-\epsilon}.$

By Frobenius computations,

$$\forall p \in S, \quad c(p) \in \mathrm{Sel}^{S\epsilon}, \quad c(p)_p^s \neq 0.$$

Compute $\operatorname{Sel}^{\epsilon}$.

Let
$$L := \mathcal{K}(E[\ell])$$
 and $L' := \mathcal{K}(E[\ell], \frac{1}{\ell}P_{\mathcal{K}})$. Get S such that
 $\operatorname{Sel}_{S}^{\epsilon} \subseteq H^{1}(L'/\mathcal{K}, E[\ell])^{\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_{\mathcal{K}})}_{-\epsilon}.$

By Frobenius computations,

$$\forall p \in S, \qquad c(p) \in \mathrm{Sel}^{S\epsilon}, \qquad c(p)_p^s \neq 0.$$

Thus

$$0 \to \underbrace{\operatorname{coker}\left(\operatorname{Sel}^{S\epsilon} \to \bigoplus_{\substack{p \in S} \\ 0} H^1_s(K_p, E[\ell])^\epsilon\right)}_{0} \to \operatorname{Sel}^\epsilon \to \underbrace{\operatorname{Sel}^\epsilon_S}_{0} \to 0.$$

107 / 115

イロト イロト イヨト イヨト ヨー わへで

Compute $\operatorname{Sel}^{-\epsilon}$.
Compute $\operatorname{Sel}^{-\epsilon}$. Fix $p \in S$.

<ロト < 部 > < 言 > < 言 > こ う < で 109/115

Compute $\operatorname{Sel}^{-\epsilon}$. Fix $p \in S$.

Let $L := K(E[\ell], \frac{1}{\ell}P_K)$ and $L' := \ker(G_L \xrightarrow{c(p)} E[\ell]).$

Compute Sel^{- ϵ}. Fix $p \in S$.

Let $L := \mathcal{K}(E[\ell], \frac{1}{\ell} \mathcal{P}_{\mathcal{K}})$ and $L' := \ker(\mathcal{G}_L \xrightarrow{c(p)} E[\ell])$. Get S' such that

 $\operatorname{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/K, E[\ell])^{-\epsilon}$

Compute $\operatorname{Sel}^{-\epsilon}$. Fix $p \in S$.

Let $L := K(E[\ell], \frac{1}{\ell}P_K)$ and $L' := \ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that

$$\operatorname{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/K, E[\ell])^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_K)}_{-\epsilon} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}_{\epsilon}.$$

Compute Sel^{- ϵ}. Fix $p \in S$.

Let $L := \mathcal{K}(E[\ell], \frac{1}{\ell} P_{\mathcal{K}})$ and $L' := \ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that $\operatorname{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/\mathcal{K}, E[\ell])^{-\epsilon} \cong \underbrace{\mathbb{E}_{\ell} \cdot \delta(P_{\mathcal{K}})}_{-\epsilon} \oplus \underbrace{\mathbb{E}_{\ell} \cdot c(p)}_{\epsilon}.$

By Frobenius computations,

$$\forall q \in S', \qquad c(pq) \in \operatorname{Sel}^{S'-\epsilon}, \qquad c(pq)_q^s \neq 0.$$

Compute Sel^{- ϵ}. Fix $p \in S$.

Let $L := \mathcal{K}(E[\ell], \frac{1}{\ell} P_{\mathcal{K}})$ and $L' := \ker(G_L \xrightarrow{c(p)} E[\ell])$. Get S' such that $\operatorname{Sel}_{S'}^{-\epsilon} \subseteq H^1(L'/\mathcal{K}, E[\ell])^{-\epsilon} \cong \underbrace{\mathbb{F}_{\ell} \cdot \delta(P_{\mathcal{K}})}_{\mathbb{F}_{\ell}} \oplus \underbrace{\mathbb{F}_{\ell} \cdot c(p)}_{\mathbb{F}_{\ell}}.$

By Frobenius computations,

$$\forall q \in S', \qquad c(pq) \in \operatorname{Sel}^{S'-\epsilon}, \qquad c(pq)_q^s \neq 0.$$

Thus

$$0 \to \underbrace{\operatorname{coker}\left(\operatorname{Sel}^{S'-\epsilon} \to \bigoplus_{q \in S'} H^1_s(K_q, E[\ell])^{-\epsilon}\right)}_{0} \to \operatorname{Sel}^{-\epsilon} \to \underbrace{\operatorname{Sel}^{-\epsilon}_{S'}}_{\subseteq \mathbb{F}_{\ell} \cdot \delta(P_K)} \to 0.$$

114 / 115

・ロト ・ 日 ト ・ 日 ト ・ 日

Thank you!

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > 115/115