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Introduction

Pedagogical question:

Is there an elementary proof of the group law on any elliptic curve?

Status quo:

Yes. But it depends on what is considered elementary.

Our answer:

Yes. And we formalised the argument in the Lean theorem prover.

Talk overview:

▶ What is an elliptic curve?

▶ Why is it a group?

▶ Where is the problem then?

▶ How did we do it?
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Elliptic curves

An elliptic curve over a field F is a pair (E , 0), where

▶ E is a smooth projective curve of genus one defined over F , and

▶ 0 is a distinguished point on E defined over F .
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Elliptic curves

An elliptic curve over a field F is a pair (E , 0), where

▶ E is a smooth projective curve of genus one defined over F , and

▶ 0 is a distinguished point on E defined over F .

Theorem (long Weierstrass model)
Any elliptic curve E over F can be given by E (X ,Y ) = 0, where

E (X ,Y ) := Y 2 + a1XY + a3Y − (X 3 + a2X
2 + a4X + a6),

for some ai ∈ F such that ∆ ̸= 0, 2

2
∆ := −(a21+4a2)

2(a21a6+4a2a6−a1a3a4+a2a
2
3−a24)−8(2a4+a1a3)

3−27(a23+4a6)
2+9(a21+4a2)(2a4+a1a3)(a

2
3+4a6)
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▶ 0 is a distinguished point on E defined over F .

Theorem (long Weierstrass model)
Any elliptic curve E over F can be given by E (X ,Y ) = 0, where

E (X ,Y ) := Y 2 + a1XY + a3Y − (X 3 + a2X
2 + a4X + a6),

for some ai ∈ F such that ∆ ̸= 0, 2 with 0 being the “point at infinity”.

Proof.
Follows from the Riemann-Roch theorem in algebraic geometry.

If char(F ) ̸= 2, 3, then E has a short Weierstrass model, where

E (X ,Y ) := Y 2 − (X 3 + aX + b),

for some a, b ∈ F such that ∆ = −16(4a3 + 27b2) ̸= 0.
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Group law

Theorem (the group law)
The points of an elliptic curve form an abelian group, where the identity
element is 0, and the addition law is characterised by

P + Q + R = 0 ⇐⇒ P,Q,R are collinear.
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Thus negation can be given by

−(x , y) := (x ,−y − a1x − a3).
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Group law

Theorem (the group law)
The points of an elliptic curve form an abelian group, where the identity
element is 0, and the addition law is characterised by

P + Q + R = 0 ⇐⇒ P,Q,R are collinear.

If R = 0, then this translates to

P + Q = 0 ⇐⇒ line through P and Q is vertical.

Thus negation can be given by

−(x , y) := (x ,−y − a1x − a3).

Define an affine involution given by

σ(Y ) := −Y − a1X − a3.

Note that in the coordinate ring F [E ] := F [X ,Y ]/⟨E (X ,Y )⟩,
−(Y · σ(Y )) = Y 2 + a1XY + a3Y ≡ X 3 + a2X

2 + a4X + a6,

which is a polynomial only in X .
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Group law

Theorem (the group law)
The points of an elliptic curve form an abelian group, where the identity
element is 0, and the addition law is characterised by

P + Q + R = 0 ⇐⇒ P,Q,R are collinear.
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Group law

Theorem (the group law)
The points of an elliptic curve form an abelian group, where the identity
element is 0, and the addition law is characterised by

P + Q + R = 0 ⇐⇒ P,Q,R are collinear.

Addition can be given by (x1, y1) + (x2, y2) := −(x3, y3). Here,

λ :=



y1 − y2
x1 − x2

x1 ̸= x2

3x21 + 2a2x1 + a4 − a1y1
y1 − σ(y1)

y1 ̸= σ(y1)

∞ otherwise

,

x3 := λ2 + a1λ− a2 − x1 − x2,

y3 := λ(x3 − x1) + y1.
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Hard problem

One may attempt to prove the axioms directly.

▶ Identity: 0 + P = P = P + 0 is trivial.

▶ Inverses: (−P) + P = 0 = P + (−P) is easy.

▶ Commutativity: P + Q = Q + P is easy.

▶ Associativity: (P + Q) + R = P + (Q + R) seems impossible?
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Hard problem

One may attempt to prove the axioms directly.

▶ Identity: 0 + P = P = P + 0 is trivial.

▶ Inverses: (−P) + P = 0 = P + (−P) is easy.

▶ Commutativity: P + Q = Q + P is easy.

▶ Associativity: (P + Q) + R = P + (Q + R) seems impossible?

Recall that each addition operation has five cases!

In the generic case, 3 checking that their X -coordinates are equal is
an equality of polynomials with 26,082 terms.

In the short Weierstrass model, this reduces to 2,636 terms.

Automation in an interactive theorem prover enables manipulation of
multivariate polynomials with at most 5,000 terms.

3P, Q, R, P + Q, P + R, and Q + R are affine and have distinct X -coordinates
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Hard problem

Associativity is known to be mathematically difficult with many proofs.

Pf 1. Just do it.
Polynomial manipulation, but impossibly slow and many cases.

Pf 2. Count dimensions.
Projective geometry (Cayley-Bacharach), but only works generically.
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Associativity is known to be mathematically difficult with many proofs.

Pf 1. Just do it.
Polynomial manipulation, but impossibly slow and many cases.

Pf 2. Count dimensions.
Projective geometry (Cayley-Bacharach), but only works generically.

One may instead identify the set of points E (F ) with a known group G .

Pf 3. G = C/ΛE .
Riemann surfaces (uniformisation), but only works for char(F ) = 0.

Pf 4. G = Pic0F (E ).
Algebraic geometry (Riemann-Roch) in general.
Ring theory (Fermat descent), but only works for char(F ) ̸= 2.

Undergraduate courses typically teach Pf 2 (assuming genericity), Pf 3
(assuming uniformisation), or Pf 4 (assuming Riemann-Roch).

Existing interactive theorem provers have used Pf 1 (Théry 2007) or Pf 4
(Bartzia–Strub 2014), both assuming the short Weierstrass model.
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Algebraic analogue

Let us examine the argument for Pf 3 and Pf 4 in more detail.
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▶ prove that ϕ respects addition, and

▶ prove that ϕ is bijective.
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To identify E (F ) with a subgroup of G is to

▶ define a function ϕ : E (F ) → G ,

▶ prove that ϕ respects addition, and

▶ prove that ϕ is bijective injective.

Pf 4 sets G = Pic0F (E ), and

ϕ is injective ⇐⇒ there is no isomorphism E
∼−→ P1,

which follows from isomorphism invariance of the genus.
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Algebraic analogue

Let us examine the argument for Pf 3 and Pf 4 in more detail.

To identify E (F ) with a subgroup of G is to

▶ define a function ϕ : E (F ) → G ,

▶ prove that ϕ respects addition, and

▶ prove that ϕ is bijective injective.

Pf 4 sets G = Pic0F (E ), and

ϕ is injective ⇐⇒ there is no isomorphism E
∼−→ P1,

which follows from isomorphism invariance of the genus.

Our proof sets G = Cl(F [E ]), and

ϕ is injective ⇐⇒ an ideal of F [E ] is not principal,

which is just a statement in ring theory.
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Algebraic analogue

The group Cl(F [E ]) is the ideal class group of the coordinate ring

F [E ] := F [X ,Y ]/⟨E (X ,Y )⟩.
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Algebraic analogue

The group Cl(F [E ]) is the ideal class group of the coordinate ring

F [E ] := F [X ,Y ]/⟨E (X ,Y )⟩.
Exercise (easy): F [E ] is an integral domain.

For any integral domain R, the ideal class group Cl(R) is the quotient
group of invertible fractional ideals by those that are principal.

▶ A submodule I is a fractional ideal if ∃r ∈ R such that r · I ⊆ R.

▶ I is invertible if there is a fractional ideal J such that I · J = R.

▶ I is principal if ∃r , s ∈ R such that r · I = ⟨s⟩.
Exercise (hard): Cl(R) is an abelian group.

Example (of invertible fractional ideals)
Any nonzero ideal I such that I · J is principal for some ideal J.
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Algebraic analogue

Pf 5 (A.–Xu).

▶ Define a function ϕ : E (F ) → Cl(F [E ]).

This will be

ϕ : E (F ) −→ Cl(F [E ])
0 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

Note that ϕ is well-defined since

⟨X − x ,Y − y⟩ · ⟨X − x ,Y − σ(y)⟩ = ⟨X − x⟩.

▶ Prove that ϕ respects addition.

This holds since

⟨X − x1,Y − y1⟩ · ⟨X − x2,Y − y2⟩ · ⟨X − x3,Y − σ(y3)⟩
= ⟨(Y − y3)− λ(X − x3)⟩.

▶ Prove that ϕ is injective.
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ϕ : E (F ) −→ Cl(F [E ])
0 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

Note that ϕ is well-defined since

⟨X − x ,Y − y⟩ · ⟨X − x ,Y − σ(y)⟩ = ⟨X − x⟩.

▶ Prove that ϕ respects addition.

This holds since

⟨X − x1,Y − y1⟩ · ⟨X − x2,Y − y2⟩ · ⟨X − x3,Y − σ(y3)⟩
= ⟨(Y − y3)− λ(X − x3)⟩.

▶ Prove that ϕ is injective.
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Algebraic analogue

Pf 5 (A.–Xu).

▶ Define a function ϕ : E (F ) → Cl(F [E ]). This will be

ϕ : E (F ) −→ Cl(F [E ])
0 7−→ [⟨1⟩]
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.
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⟨X − x1,Y − y1⟩ · ⟨X − x2,Y − y2⟩ · ⟨X − x3,Y − σ(y3)⟩
= ⟨(Y − y3)− λ(X − x3)⟩.

▶ Prove that ϕ is injective.
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Algebraic analogue

Pf 5 (A.–Xu).

▶ Define a function ϕ : E (F ) → Cl(F [E ]). This will be

ϕ : E (F ) −→ Cl(F [E ])
0 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
.

Note that ϕ is well-defined since

⟨X − x ,Y − y⟩ · ⟨X − x ,Y − σ(y)⟩ = ⟨X − x⟩.

▶ Prove that ϕ respects addition. This holds since

⟨X − x1,Y − y1⟩ · ⟨X − x2,Y − y2⟩ · ⟨X − x3,Y − σ(y3)⟩
= ⟨(Y − y3)− λ(X − x3)⟩.

▶ Prove that ϕ is injective.
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }.
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Example (of norms)
Recall that Y · Y ≡ −(a1X + a3) · Y + (X 3 + a2X

2 + a4X + a6).
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Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Example (of norms)
Recall that Y · Y ≡ −(a1X + a3) · Y + (X 3 + a2X

2 + a4X + a6). Then

Nm(Y ) ≡ det

(
0 1

X 3 + a2X
2 + a4X + a6 −(a1X + a3)

)
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Example (of norms)
Recall that Y · Y ≡ −(a1X + a3) · Y + (X 3 + a2X

2 + a4X + a6). Then

Nm(Y ) ≡ det

(
0 1

X 3 + a2X
2 + a4X + a6 −(a1X + a3)

)
= X 3 + a2X

2 + a4X + a6.
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Example (of norms)
Recall that Y · Y ≡ −(a1X + a3) · Y + (X 3 + a2X

2 + a4X + a6). Then

Nm(Y ) ≡ det

(
0 1

X 3 + a2X
2 + a4X + a6 −(a1X + a3)

)
= X 3 + a2X

2 + a4X + a6.

In general, if f = p + qY ∈ F [E ] for some p, q ∈ F [X ],

Nm(f ) = p2 − pq(a1X + a3)− q2(X 3 + a2X
2 + a4X + a6).
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Example (of norms)
Recall that Y · Y ≡ −(a1X + a3) · Y + (X 3 + a2X

2 + a4X + a6). Then

Nm(Y ) ≡ det

(
0 1

X 3 + a2X
2 + a4X + a6 −(a1X + a3)

)
= X 3 + a2X

2 + a4X + a6.

In general, if f = p + qY ∈ F [E ] for some p, q ∈ F [X ],

Nm(f ) = p2 − pq(a1X + a3)− q2(X 3 + a2X
2 + a4X + a6).

This has degree max(2 deg(p), 2 deg(q) + 3).
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Example (of norms)
Recall that Y · Y ≡ −(a1X + a3) · Y + (X 3 + a2X

2 + a4X + a6). Then

Nm(Y ) ≡ det

(
0 1

X 3 + a2X
2 + a4X + a6 −(a1X + a3)

)
= X 3 + a2X

2 + a4X + a6.

In general, if f = p + qY ∈ F [E ] for some p, q ∈ F [X ],

Nm(f ) = p2 − pq(a1X + a3)− q2(X 3 + a2X
2 + a4X + a6).

This has degree max(2 deg(p), 2 deg(q) + 3). In particular,

deg(Nm(f )) ̸= 1. (⋆)
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Now [·f ] has a Smith normal form

[·f ] ∼
(
p 0
0 q

)
, p, q ∈ F [X ].
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Now [·f ] has a Smith normal form

[·f ] ∼
(
p 0
0 q

)
, p, q ∈ F [X ].

On one hand, F [E ]/⟨f ⟩ ∼= F [X ]/⟨p⟩ ⊕ F [X ]/⟨q⟩.

67 / 80



Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Now [·f ] has a Smith normal form

[·f ] ∼
(
p 0
0 q

)
, p, q ∈ F [X ].

On one hand, F [E ]/⟨f ⟩ ∼= F [X ]/⟨p⟩ ⊕ F [X ]/⟨q⟩. Then
dim(F [E ]/⟨f ⟩) = deg(p) + deg(q).
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Now [·f ] has a Smith normal form

[·f ] ∼
(
p 0
0 q

)
, p, q ∈ F [X ].

On one hand, F [E ]/⟨f ⟩ ∼= F [X ]/⟨p⟩ ⊕ F [X ]/⟨q⟩. Then
dim(F [E ]/⟨f ⟩) = deg(p) + deg(q).

On the other hand, Nm(f ) = pq.
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Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Now [·f ] has a Smith normal form

[·f ] ∼
(
p 0
0 q

)
, p, q ∈ F [X ].

On one hand, F [E ]/⟨f ⟩ ∼= F [X ]/⟨p⟩ ⊕ F [X ]/⟨q⟩. Then
dim(F [E ]/⟨f ⟩) = deg(p) + deg(q).

On the other hand, Nm(f ) = pq. Then

deg(Nm(f )) = deg(p) + deg(q).

70 / 80



Injectivity proof

Note that F [E ] is free over F [X ] with basis {1,Y }. Thus it has a norm

Nm : F [E ] 7−→ F [X ]
f 7−→ det([·f ]) .

Now [·f ] has a Smith normal form

[·f ] ∼
(
p 0
0 q

)
, p, q ∈ F [X ].

On one hand, F [E ]/⟨f ⟩ ∼= F [X ]/⟨p⟩ ⊕ F [X ]/⟨q⟩. Then
dim(F [E ]/⟨f ⟩) = deg(p) + deg(q).

On the other hand, Nm(f ) = pq. Then

deg(Nm(f )) = deg(p) + deg(q).

Combining both equalities and (⋆) yields

dim(F [E ]/⟨f ⟩) ̸= 1. (†)
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Injectivity proof

Pf 5 (A.–Xu).

▶ Define a function ϕ : E (F ) → Cl(F [E ]).

▶ Prove that ϕ respects addition.

▶ Prove that ϕ is injective.

It suffices to show that ⟨X − x ,Y − y⟩ is
not principal for any (x , y) ∈ E (F ). Suppose otherwise, that

⟨X − x ,Y − y⟩ = ⟨f ⟩, f ∈ F [E ].

Then

F [E ]/⟨f ⟩ = F [E ]/⟨X − x ,Y − y⟩

∼= F [X ,Y ]/⟨E (X ,Y ),X − x ,Y − y⟩ 3rd iso thm

= F [X ,Y ]/⟨X − x ,Y − y⟩ (x , y) ∈ E (F )
∼= F 1st iso thm.

Since dim(F ) = 1, this contradicts (†)!
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Injectivity proof
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▶ Prove that ϕ respects addition.

▶ Prove that ϕ is injective. It suffices to show that ⟨X − x ,Y − y⟩ is
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▶ Prove that ϕ respects addition.
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= F [X ,Y ]/⟨X − x ,Y − y⟩ (x , y) ∈ E (F )
∼= F 1st iso thm.

Since dim(F ) = 1, this contradicts (†)!
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Injectivity proof

Pf 5 (A.–Xu).

▶ Define a function ϕ : E (F ) → Cl(F [E ]).

▶ Prove that ϕ respects addition.

▶ Prove that ϕ is injective. It suffices to show that ⟨X − x ,Y − y⟩ is
not principal for any (x , y) ∈ E (F ). Suppose otherwise, that
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= F [X ,Y ]/⟨X − x ,Y − y⟩ (x , y) ∈ E (F )
∼= F 1st iso thm.

Since dim(F ) = 1, this contradicts (†)!
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Injectivity proof

Pf 5 (A.–Xu).

▶ Define a function ϕ : E (F ) → Cl(F [E ]).

▶ Prove that ϕ respects addition.

▶ Prove that ϕ is injective. It suffices to show that ⟨X − x ,Y − y⟩ is
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Injectivity proof
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Injectivity proof

Pf 5 (A.–Xu).
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Since dim(F ) = 1, this contradicts (†)!
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Conclusions

Some retrospectives:

▶ formalisation encouraged proof accessible to undergraduates

▶ novel injectivity proof and novel formalisation

▶ proof works for nonsingular points of Weierstrass curves

▶ heavy use of linear algebra and ring theory in Lean’s mathlib

▶ generality of ideal class groups of integral domains

▶ plans for many more formalisation projects!

Thank you!
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