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L-functions

Let E be an elliptic curve over Q.

Recall that the L-function of E is

L(E , s) :=
∏
p

1

det(1− p−s · Fr−1
p | ρ∨Ip

E ,q)
.
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L-functions

Let E be an elliptic curve over Q. Let K be finite Galois over Q.

Recall that the L-function of E/K is

L(E/K , s) :=
∏
p

1

det(1−Nm(p)−s · Fr−1
p | ρ∨Ip

E ,q)
.

Conjecture (Birch–Swinnerton-Dyer)

▶ The order of vanishing r of L(E/K , s) at s = 1 is rk(E/K ).
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Twisted L-functions

Artin’s formalism for L-functions gives

L(E/K , s) =
∏

ρ:Gal(K/Q)→C×

L(E , ρ, s)dim ρ.

Here the L-function of E twisted by an Artin representation ρ is

L(E , ρ, s) :=
∏
p

1

det(1− p−s · Fr−1
p | (ρ∨E ,q ⊗ ρ∨)Ip )

.

If K is abelian, then ρ corresponds to a Dirichlet character χ, and

L(E , s) =
∑
n∈N

an
ns

χ
⇝ L(E , χ, s) =

∑
n∈N

anχ(n)

ns
.

What can be said about L(E , ρ, s) algebraically and analytically?
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Algebraic result: twisted conjectures

Conjecture (Deligne–Gross)
The order of vanishing of L(E , ρ, s) at s = 1 is ⟨ρ,E (K )⊗Z C⟩.

What is the conjectural leading term? Assuming L(E , 1) ̸= 0, define

L(E , χ) := L(E , χ, 1) · p

τ(χ) · Ω(E )
,

for any primitive Dirichlet character χ of conductor p.

Example (Dokchitser–Evans–Wiersema 2021)
Let E1 and E2 be the elliptic curves given by 1356d1 and 1356f1, and let
χ be the cubic character of conductor 7 given by χ(3) = ζ23 . Then

Reg(Ei/K ) = Tam(Ei/K ) = X(Ei/K ) = tor(Ei/K ) = 1,

for K = Q and K = Q(ζ7)
+, but L(E1, χ) = ζ23 and L(E2, χ) = −ζ23 .
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Algebraic result: determining units

Assume E has conductor N and satisfies c1(E ) = 1, and assume χ has
odd prime conductor p ∤ N and odd prime order q ∤ #E (Fp) · BSD(E ).

Theorem (Dokchitser–Evans–Wiersema 2021)
Let ζ := χ(N)(q−1)/2. Then L(E , χ) · ζ ∈ Z[ζq]+ \ {0}, and has norm

Nm
Q(ζq)

+

Q (L(E , χ) · ζ) = ±

√
BSD(E/K )

BSD(E )︸ ︷︷ ︸
B

,

where K is the degree q subfield of Q(ζp) cut out by χ.

Theorem (A. 2024)
If q = 3, then

L(E , χ) · ζ =

{
B if #E (Fp) · BSD(E ) · B−1 ≡ 2 mod 3

−B if #E (Fp) · BSD(E ) · B−1 ≡ 1 mod 3
.
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Analytic result: numerical evidence

Assume E as before, and let q be an odd prime. As p varies over odd
primes p ≡ 1 mod q, how does L(E , χ) vary, for some uniform choice of
primitive Dirichlet characters χ of conductor p and order q?
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Assume E as before, and let q be an odd prime. As p varies over odd
primes p ≡ 1 mod q, how does L(E , χ) vary, for some uniform choice of
primitive Dirichlet characters χ of conductor p and order q?

Example (E = 20a1, q = 3)
p 7 13 19 31 37 43 61 67 73 79

L(E , χ) 2 -2ζ3 -4 -6ζ3 -6ζ3 6ζ3 2 -2ζ3 0 -6ζ3

mod 3 2 1 2 0 0 0 2 1 0 0

p 97 103 109 127 139 151 157 163 181
L(E , χ) -4 -6ζ3 6ζ3 6 18ζ3 -4 30ζ3 4ζ3 -2ζ3

mod 3 2 0 0 0 0 2 0 1 1

p 193 199 211 223 229 241 271 277 283
L(E , χ) -4 4ζ3 10ζ3 -24ζ3 0 -14ζ3 -6ζ3 0 6ζ3

mod 3 2 1 1 0 0 1 0 0 0
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L(E , χ) -4 4ζ3 10ζ3 -24ζ3 0 -14ζ3 -6ζ3 0 6ζ3
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Kisilevsky–Nam 2022 gave heuristic predictions on the asymptotic
distribution of L(E , χ), and computed data for the six elliptic curves
given by 11a1, 14a1, 15a1, 17a1, 19a1, and 37b1.
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Analytic result: residual densities

Let X<n
E ,q be the set of order q primitive Dirichlet characters χ of

conductor pχ < n such that χ1 ≡ χ2 whenever pχ1 = pχ2 . Define

δE ,q(λ) := lim
n→∞

#{χ ∈ X<n
E ,q | L(E , χ) ≡ λ mod (1− ζq)}

#X<n
E ,q

.

Theorem (A. 2024)
Let m = 1− ordq(BSD(E )). Then δE ,q counts certain matrices in

GE ,qm := {M ∈ imρE ,qm | det(M) ≡ 1 mod q}.

If ρE ,q is surjective, then

δE ,q(λ) =


1

q−1 if L0(q)L4(q) = 1
q

q2−1 if L0(q)L4(q) = 0
1

q+1 if L0(q)L4(q) = −1

, Ln(q) :=

(
λ

BSD(E) + n

q

)
.
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Analytic result: explicit algorithm

Theorem (A. 2024)
If q = 3, then δE ,3 only depends on imρE ,9 and b := 3BSD(E ) mod 9.

imρE,3 or imρE,9 b δE,3(0) δE,3(1) δE,3(2) example

GL2(F3)
3 3/8 1/4 3/8 11a2

6 3/8 3/8 1/4 11a1

3B, 3Cs
3 1/2 0 1/2 50b3

6 1/2 1/2 0 50b1

3Nn
3 1/8 3/4 1/8 704e1

6 1/8 1/8 3/4 245b1

3Ns
3 1/4 1/2 1/4 1690d1

6 1/4 1/4 1/2 338d1

3.8.0.1 any 5/9 2/9 2/9 20a1

9.24.0.2,

9.72.0.(8,9,10),
1, 4, 7 1/3 2/3 0 108a1

27.648.18.1,

27.1944.55.(43,44)
2, 5, 8 1/3 0 2/3 36a1

any 1 0 0 14a1
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Proof of algebraic result

Manin’s formalism for modular symbols compares L(E , 1) and L(E , χ, 1).

The Hecke action on the space of modular symbols gives

−L(E , 1) ·#E (Fp) =

p−1∑
a=1

∫ a
p

0

2πifE (z)dz .

On the other hand, Birch’s formula can be modified to give

L(E , χ, 1) =
τ(χ)

n

p−1∑
a=1

χ(a)

∫ a
p

0

2πifE (z)dz .

Scaling appropriately gives a Z[ζq] congruence

−L(E ) ·#E (Fp) ≡ L(E , χ) mod (1− ζq),

which proves the algebraic result.
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Proof of analytic result

For the analytic result, note that L(E , χ) varies according to

#E (Fp) = 1 + det(ρE ,q(Frp))− tr(ρE ,q(Frp)) mod q.

Chebotarev’s density theorem says that ρE ,q(Frp) varies uniformly in

GE ,q∞ := {M ∈ imρE ,q | det(M) ≡ 1 mod q}.

The following result reduces the computation from GE ,q∞ to GE ,q2 .

Theorem (A. 2024)
Let q be an odd prime. Then ordq(L(E )) ≥ −1.

Proof.
▶ Cancellation of torsion and Tamagawa numbers (Lorenzini 2011)

▶ Classification of im(ρE ,3) (Rouse–Sutherland–Zureick-Brown 2022)
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