

Tate's thesis¹ and epsilon factors

Galois representations and root numbers

David Kurniadi Angdinata

University College London

Tuesday, 22 November 2022

¹Tate (1950) *Fourier analysis in number fields and Hecke's zeta-functions*

Overview

Consider the Riemann ζ -function

$$\zeta(s) := \sum_{n \in \mathbb{N}^+} \frac{1}{n^s}.$$

Theorem (Riemann (1859))

$\zeta(s)$ has an analytic continuation to \mathbb{C} with simple poles at $s = 0, 1$ and satisfies a functional equation $Z(s) = Z(1 - s)$ where

$$Z(s) := \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \cdot \zeta(s).$$

Sketch of proof.

Write $Z(s)$ as a real integral of the theta series $\Theta(z) := \sum_{n \in \mathbb{Z}} e^{-\pi n^2 z}$.

The Poisson summation formula for $\mathbb{Z} \subset \mathbb{R}$ relates $\Theta(z)$ and $\Theta(1/z)$. □

Can you generalise this to a number field K ?

Overview

Consider the Dedekind ζ -function

$$\zeta_K(s) := \sum_{0 \neq I \trianglelefteq \mathcal{O}_K} \frac{1}{\text{Nm}(I)^s}.$$

Theorem (Hecke (1917))

$\zeta_K(s)$ has an analytic continuation to \mathbb{C} with simple poles at $s = 0, 1$ and satisfies a functional equation $Z_K(s) = Z_K(1 - s)$ where

$$Z_K(s) := |\Delta_K|^{\frac{s}{2}} \cdot \left(\pi^{-\frac{s}{2}} \Gamma \left(\frac{s}{2} \right) \right)^{r_1} \cdot (2(2\pi)^{-s} \Gamma(s))^{r_2} \cdot \zeta_K(s).$$

Sketch of proof.

Write $Z_K(s)$ as a real integral of a generalised theta series $\Theta_K(s)$ and apply the Poisson summation formula for a lattice in \mathbb{R}^n . □

Can you explain the Γ -factors in the functional equation? Can you generalise this to L -functions $L(\chi, s)$ twisted by characters?

Overview

Tate (1950) answered both questions by giving a different proof of this.
Idea: lift $\zeta_K(s)$ or $L(\chi, s)$ into global ζ -integrals over the locally compact topological group of idèles \mathbb{A}_K^\times and apply techniques of Fourier analysis.

Note that there is an Euler product

$$Z_K(s) = |\Delta_K|^{\frac{s}{2}} \cdot \left(\pi^{-\frac{s}{2}} \Gamma \left(\frac{s}{2} \right) \right)^{r_1} \cdot (2(2\pi)^{-s} \Gamma(s))^{r_2} \cdot \prod_{v \in V_K^f} \left(\sum_{n=0}^{\infty} q_v^{-ns} \right),$$

where V_K^f is the set of primes of K . On the other hand,

$$\mathbb{A}_K^\times = (\mathbb{R}^\times)^{r_1} \times (\mathbb{C}^\times)^{r_2} \times \overline{\prod_{v \in V_K^f} K_v^\times}.$$

Idea: the global ζ -integral over \mathbb{A}_K^\times is the product of local ζ -integrals over K_v^\times , and the Γ -factors are local ζ -integrals at the archimedean places.

Local theory — Fourier analysis

Let F be a completion of a number field K_v , so F/\mathbb{R} or F/\mathbb{Q}_p .

For $F = \mathbb{R}$, the Fourier transform

$$\hat{f}(y) = \int_{-\infty}^{\infty} e^{-2\pi i xy} f(x) dx$$

has three components. These are

- ▶ the integrable function f ,
- ▶ the Lebesgue measure dx , and
- ▶ the additive factor $e^{-2\pi i xy}$.

Each of these can be generalised for $F = \mathbb{C}$ and F/\mathbb{Q}_p .

Local theory — Haar measures

A locally compact topological group G can be endowed with a translation-invariant **Haar measure** $\mu_G = \int d_G x$ unique up to scaling.

Examples

- ▶ Let $d_{\mathbb{R}} x := dx$ be the Lebesgue measure, and let $d_{\mathbb{R}^\times} x := d_{\mathbb{R}} x / |x|_{\mathbb{R}}$.
- ▶ Let $d_{\mathbb{C}}(x + iy) := 2dxdy$ be twice the Lebesgue measure, and let $d_{\mathbb{C}^\times} z := d_{\mathbb{C}} z / |z|_{\mathbb{C}}$.
- ▶ Normalise $d_{\mathbb{Q}_p} x$ such that $\mu_{\mathbb{Q}_p}(\mathbb{Z}_p) := 1$, so that

$$\mu_{\mathbb{Q}_p}(a + p^n \mathbb{Z}_p) = \mu_{\mathbb{Q}_p}(p^n \mathbb{Z}_p) = p^{-n} \mu_{\mathbb{Q}_p}(\mathbb{Z}_p) = p^{-n},$$

for all $a \in \mathbb{Q}_p$, and let

$$d_{\mathbb{Q}_p^\times} x := \frac{1}{1 - p^{-1}} \frac{d_{\mathbb{Q}_p} x}{|x|_v},$$

so that $\mu_{\mathbb{Q}_p^\times}(\mathbb{Z}_p^\times) = 1$. If G/\mathbb{Q}_p , then μ_G and μ_{G^\times} should account for the valuation δ_v of the different ideal $\mathcal{D}_{G/\mathbb{Q}_p} \trianglelefteq \mathcal{O}_G$.

Local theory — Schwartz–Bruhat functions

What do you integrate over F^\times ? **Schwartz–Bruhat** functions $F \rightarrow \mathbb{C}$.

- If $F = \mathbb{R}$, this is a function such that for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$,

$$\lim_{|x| \rightarrow \infty} \left(|x|^n \left| \frac{d^m f}{dx^m} \right| \right) = 0.$$

Example

Let $f(x) = f_0(x) := e^{-\pi x^2}$. Then

$$\begin{aligned} \int_{\mathbb{R}^\times} f(x) |x|_{\mathbb{R}}^s d_{\mathbb{R}^\times} x &= 2 \int_0^\infty e^{-\pi x^2} x^s \frac{dx}{x} \\ &= \int_0^\infty e^{-y} \left(\frac{y}{\pi} \right)^{\frac{s}{2}} \frac{dy}{y} & y = \pi x^2 \\ &= \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \\ &=: \Gamma_{\mathbb{R}}(s). \end{aligned}$$

Local theory — Schwartz–Bruhat functions

What do you integrate over F^\times ? **Schwartz–Bruhat** functions $F \rightarrow \mathbb{C}$.

- If $F = \mathbb{C}$, this is a function such that for all $n \in \mathbb{N}$ and $m_1, m_2 \in \mathbb{N}$,

$$\lim_{|x+iy| \rightarrow \infty} \left(|x+iy|_{\mathbb{C}}^n \left| \frac{\partial^{m_1+m_2} f}{\partial x^{m_1} \partial y^{m_2}} \right|_{\mathbb{C}} \right) = 0.$$

Example

Let $f(z) = f_0(z) := \frac{1}{\pi} e^{-2\pi z\bar{z}}$. Then

$$\begin{aligned} \int_{\mathbb{C}^\times} f(z) |z|_{\mathbb{C}}^s d_{\mathbb{C}^\times} z &= \dots \\ &= 2(2\pi)^{-s} \Gamma(s) \\ &=: \Gamma_{\mathbb{C}}(s). \end{aligned}$$

Local theory — Schwartz–Bruhat functions

What do you integrate over F^\times ? **Schwartz–Bruhat** functions $F \rightarrow \mathbb{C}$.

- If $F = K_v/\mathbb{Q}_p$, this is a linear combination of characteristic functions

$$\mathbb{I}_{a + \pi_v^n \mathcal{O}_v}(x) = \begin{cases} 1 & \text{if } x \in a + \pi_v^n \mathcal{O}_v, \\ 0 & \text{if } x \notin a + \pi_v^n \mathcal{O}_v, \end{cases}$$

Example

Let $f(x) = f_0(x) := \mathbb{I}_{\mathbb{Z}_p}(x)$. Then

$$\begin{aligned} \int_{\mathbb{Q}_p^\times} f(x) |x|_p^s d_{\mathbb{Q}_p^\times} x &= \frac{1}{1 - p^{-1}} \int_{\mathbb{Z}_p} |x|_p^s \frac{d_{\mathbb{Q}_p} x}{|x|_p} \\ &= \sum_{n=0}^{\infty} \frac{p^{n-ns}}{1 - p^{-1}} \int_{p^n \mathbb{Z}_p \setminus p^{n+1} \mathbb{Z}_p} d_{\mathbb{Q}_p} x = \sum_{n=0}^{\infty} p^{-ns}. \end{aligned}$$

If F/\mathbb{Q}_p , let $f_0(x) := \mathbb{I}_{\mathcal{O}_F}(x)$ instead.

Local theory — additive characters

A Schwartz–Bruhat function $f : F \rightarrow \mathbb{C}$ has a Fourier transform

$$\widehat{f}(y) := \int_F \psi_F(xy) f(x) d_F x,$$

where $\psi_F : F \rightarrow \mathbb{C}$ is an **additive character**.

- ▶ If $F = \mathbb{R}$, then $\psi_{\mathbb{R}}(x) := e^{-2\pi i x}$.
- ▶ If $F = \mathbb{C}$, then $\psi_{\mathbb{C}}(z) := e^{-2\pi i(z+\bar{z})}$.
- ▶ If $F = \mathbb{Q}_p$, then $\psi_{\mathbb{Q}_p}(x) := e^{2\pi i y}$, where $y \in \mathbb{Z}[p^{-1}]$ is such that $x \in y + \mathbb{Z}_p$. If F/\mathbb{Q}_p , apply the trace $\text{tr} : F \rightarrow \mathbb{Q}_p$ first.

These are defined in such a way so that the Fourier inversion formula $\widehat{\widehat{f}}(x) = f(-x)$ holds, giving a duality between ψ_F and $d_F x$. Indeed $\widehat{\widehat{f}}_0 = f_0$, which is necessary in the Poisson summation formula.

Local theory — ζ -integrals

Let $f : F \rightarrow \mathbb{C}$ be a Schwartz–Bruhat function, and let $\chi : F^\times \rightarrow \mathbb{C}^\times$ be a multiplicative character. The **local ζ -integral** is defined to be

$$\zeta_F(f, \chi) := \int_{F^\times} f(x)\chi(x)d_{F^\times}x,$$

which is independent of the dual pair $(\psi_F, d_F x)$.

Theorem (Functional equation for the local ζ -integral)

There is a meromorphic function $L_F : \text{Hom}(F^\times, \mathbb{C}^\times) \rightarrow \mathbb{C}^\times$ and a holomorphic function $\epsilon_F : \text{Hom}(F^\times, \mathbb{C}^\times) \rightarrow \mathbb{C}^\times$ such that

$$\frac{\zeta_F(\widehat{f}, \chi^{-1}| \cdot |_F)}{L_F(\chi^{-1}| \cdot |_F)} = \epsilon_F(\chi) \frac{\zeta_F(f, \chi)}{L_F(\chi)}.$$

Here $L_F(\chi)$ is the **local L -factor** and $\epsilon_F(\chi)$ is the **local ϵ -factor**, which are both independent of the choice of f . The **local root number** is then defined to be $w_F(\chi) := \epsilon_F(\chi)/|\epsilon_F(\chi)| \in U(1)$.

Local theory — ϵ -factors

Determine multiplicative characters $\chi : F^\times \rightarrow \mathbb{C}^\times$ completely.

► Let $F = \mathbb{R}$. Then

$$\chi(x) = \eta(x)|x|_{\mathbb{R}}^s, \quad \eta \in \{1, \text{sgn}\}.$$

- If $\eta = 1$, set $f(x) := f_0(x) = e^{-\pi x^2}$ and $L_{\mathbb{R}}(\chi) := \Gamma_{\mathbb{R}}(s)$.
Then compute $\epsilon_{\mathbb{R}}(\chi) = 1$.
- If $\eta = \text{sgn}$, set $f(x) := xe^{-\pi x^2}$ and $L_{\mathbb{R}}(\chi) := \Gamma_{\mathbb{R}}(s+1)$.
Then compute $\epsilon_{\mathbb{R}}(\chi) = -i$.

► Let $F = \mathbb{C}$. Then

$$\chi(z) = (z/\sqrt{z\bar{z}})^n |z|_{\mathbb{C}}^s, \quad n \in \mathbb{Z}.$$

- If $n = 0$, set $f(z) := f_0(z) = \frac{1}{\pi} e^{-2\pi z\bar{z}}$ and $L_{\mathbb{C}}(\chi) := \Gamma_{\mathbb{C}}(s)$.
Then compute $\epsilon_{\mathbb{C}}(\chi) = 1$.
- In general, set $f(z) := \frac{1}{\pi} z^n e^{-2\pi z\bar{z}}$ and $L_{\mathbb{C}}(\chi) := \Gamma_{\mathbb{C}}(s + \frac{1}{2}|n|)$.
Then compute $\epsilon_{\mathbb{C}}(\chi) = i^{-|n|}$.

Local theory — ϵ -factors

Determine multiplicative characters $\chi : F^\times \rightarrow \mathbb{C}^\times$ completely.

- ▶ Let $F = K_v/\mathbb{Q}_p$. The **conductor** of χ is the least $n \in \mathbb{N}$ such that

$$\chi((1 + \pi_v^n \mathcal{O}_v) \cap \mathcal{O}_v^\times) = 1.$$

If $n = 0$, then χ is said to be **unramified**.

- ▶ If $n = 0$, set $f := \mathbb{I}_{\mathcal{O}_v}$ and $L_{K_v}(\chi) := (1 - \chi(\pi_v)^{-1})^{-1}$.
Then compute

$$\epsilon_{K_v}(\chi) = q_v^{\frac{\delta_v}{2}} \chi(\pi_v)^{\delta_v}.$$

- ▶ If $n > 0$, set $f := \mathbb{I}_{1 + \pi_v^n \mathcal{O}_v}$ and $L_{K_v}(\chi) := 1$.
Then compute

$$\epsilon_{K_v}(\chi) = \int_{K_v^\times} \psi_v(x) \chi(x)^{-1} d_{K_v} x.$$

Local theory — ϵ -factors

Determine multiplicative characters $\chi : F^\times \rightarrow \mathbb{C}^\times$ completely.

F	χ	$L_F(\chi)$	$\epsilon_F(\chi)$
\mathbb{R}	$ x _{\mathbb{R}}^s$	$\Gamma_{\mathbb{R}}(s)$	1
\mathbb{R}	$\text{sgn}(x) x _{\mathbb{R}}^s$	$\Gamma_{\mathbb{R}}(s+1)$	$-i$
\mathbb{C}	$(z/\sqrt{z\bar{z}})^n z _{\mathbb{C}}^s$	$\Gamma_{\mathbb{C}}(s + \frac{1}{2} n)$	$i^{- n }$
K_v	unramified	$(1 - \chi(\pi_v)^{-1})^{-1}$	$q_v^{\frac{\delta_v}{2}} \chi(\pi_v)^{\delta_v}$
K_v	ramified	1	$\int_{K_v^\times} \psi_v(x) \chi(x)^{-1} d_{K_v} x$

Global theory — adèles and idèles

Let $V_K = V_K^f \cup V_K^\infty$ be the set of places of a number field K .

Consider the adèle ring

$$\mathbb{A}_K := \left\{ (x_v)_{v \in V_K} \in \prod_{v \in V_K} K_v : x_v \in \mathcal{O}_v \text{ for almost all } v \in V_K \right\}.$$

Its unit group is the idèle group

$$\mathbb{A}_K^\times := \left\{ (x_v)_{v \in V_K} \in \prod_{v \in V_K} K_v^\times : x_v \in \mathcal{O}_v^\times \text{ for almost all } v \in V_K \right\}.$$

Example

If $K = \mathbb{Q}$, then

$$\mathbb{A}_{\mathbb{Q}} \cong \mathbb{R} \times \bigcup_{n \in \mathbb{N}^+} \frac{1}{n} \prod_{p < \infty} \mathbb{Z}_p.$$

Global theory — adèles and idèles

Let $V_K = V_K^f \cup V_K^\infty$ be the set of places of a number field K .

The idèle group is endowed with the restricted product topology such that

$$\prod_{v \in S} U_v \times \prod_{v \in V_K \setminus S} \mathcal{O}_v^\times,$$

is an open basis for some finite $V_K^\infty \subseteq S \subset V_K$ and some open $U_v \subseteq K_v^\times$.

There is a diagonal embedding $K^\times \hookrightarrow \mathbb{A}_K^\times$. By the product formula,

$$|x|_{\mathbb{A}_K} := \prod_{v \in V_K} |x|_v = 1, \quad x \in K^\times.$$

By Tychonoff's theorem, both the idèle group \mathbb{A}_K^\times and the idèle class group $C_K := \mathbb{A}_K^\times / K^\times$ are locally compact topological groups.

Global theory — Hecke characters

A **Hecke character** is a character of the idèle class group, that is a continuous homomorphism $C_K \rightarrow \mathbb{C}^\times$ with the discrete topology on \mathbb{C}^\times .

Examples

- A Dirichlet character $\phi : (\mathbb{Z}/n\mathbb{Z})^\times \rightarrow \mathbb{C}^\times$ induces a Hecke character

$$C_{\mathbb{Q}} \cong \mathbb{R}^+ \times \prod_{p < \infty} \mathbb{Z}_p^\times \twoheadrightarrow \prod_{p|n} (\mathbb{Z}_p/n\mathbb{Z}_p)^\times \cong (\mathbb{Z}/n\mathbb{Z})^\times \xrightarrow{\phi} \mathbb{C}^\times$$

of finite order. Indeed, Hecke characters of \mathbb{Q} of finite order correspond precisely to primitive Dirichlet characters of \mathbb{Q} .

- In fact, any Hecke character of \mathbb{Q} is of the form $\eta| \cdot |_{\mathbb{A}_K}^s$ for some $s \in \mathbb{C}$, where η is a Hecke character of finite order.
- In general, a Hecke character $\chi : C_K \rightarrow \mathbb{C}^\times$ is uniquely determined by local multiplicative characters $\chi|_{K_v^\times} : K_v^\times \rightarrow \mathbb{C}^\times$, which are unramified, so $\chi|_{K_v^\times}(\mathcal{O}_v^\times) = 1$, for almost all $v \in V_K$.

Global theory — Hecke characters

A **Hecke character** is a character of the idèle class group, that is a continuous homomorphism $C_K \rightarrow \mathbb{C}^\times$ with the discrete topology on \mathbb{C}^\times .

A **Hecke L-function** of χ is

$$L(\chi) := \prod_{v \in V_K^f} L_{K_v}(\chi|_{K_v^\times}),$$

where L_{K_v} are the local L -factors

$$L_{K_v}(\chi) = \begin{cases} (1 - \chi(\pi_v))^{-1} & \text{if } \chi \text{ is unramified,} \\ 1 & \text{if } \chi \text{ is not unramified.} \end{cases}$$

Examples

- If $\chi = |\cdot|_{\mathbb{A}_K}^s$, then $L(\chi)$ is the Dedekind ζ -function $\zeta_K(s)$.
- If $K = \mathbb{Q}$ and χ has finite order, then $L(\chi)$ is the Dirichlet L -function of a primitive Dirichlet character.

Global theory — Fourier analysis

The three components for the global Fourier transform are simply defined as the product of their local counterparts with the unramified condition.

- ▶ The global Schwartz–Bruhat functions on \mathbb{A}_K are linear combinations of products of local Schwartz–Bruhat functions $f_v : K_v \rightarrow \mathbb{C}$ such that $f_v = \mathbb{I}_{\mathcal{O}_v}$ for almost all $v \in V_K$.
- ▶ The global Haar measure on \mathbb{A}_K is such that

$$\int_{\mathbb{A}_K} f(x) d\mathbb{A}_K x := \prod_{v \in V_K} \int_{K_v} f|_{K_v}(x) d_{K_v} x.$$

- ▶ The global additive character on \mathbb{A}_K is such that

$$\psi_{\mathbb{A}_K}((x_v)_{v \in V_K}) := \prod_{v \in V_K} \psi_{K_v}(x_v).$$

By construction, since the Fourier inversion formula holds in all completions of K , the Poisson summation formula holds in \mathbb{A}_K .

Global theory — ζ -integrals

Let $f : \mathbb{A}_K \rightarrow \mathbb{C}$ be a Schwartz–Bruhat function, and let $\chi : C_K \rightarrow \mathbb{C}^\times$ be a Hecke character. The **global ζ -integral** is defined to be

$$\zeta(f, \chi) := \prod_{v \in V_K} \zeta_{K_v}(f|_{K_v^\times}, \chi|_{K_v^\times}),$$

which is an infinite product.

Theorem (Functional equation for the global ζ -integral)

ζ has a meromorphic continuation to \mathbb{C} and satisfies a functional equation

$$\zeta(f, \chi) = \zeta(\widehat{f}, \chi^{-1}| \cdot |_{\mathbb{A}_K}).$$

Sketch of proof.

The Poisson summation formula \mathbb{A}_K relates f and \widehat{f} . □

Global theory — ζ -integrals

Theorem (Tate (1950))

$L(\chi)$ has a meromorphic continuation to \mathbb{C} and satisfies a functional equation $\Lambda(\chi) = \epsilon(\chi) \Lambda(\chi^{-1} \cdot |_{\mathbb{A}_K})$ where

$$\Lambda(\chi) := L_{\mathbb{R}}(s)^{r_1} \cdot L_{\mathbb{C}}(s)^{r_2} \cdot L(\chi), \quad \epsilon(\chi) := \prod_{v \in V_K} \epsilon_{K_v}(\chi).$$

Here $\epsilon(\chi)$ is the **global ϵ -factor**, and similarly the **global root number** is defined to be $w(\chi) := \prod_{v \in V_K} w_{K_v}(\chi) \in U(1)$.

Proof.

The product of the functional equations for the local ζ -integrals is

$$\frac{\zeta(\widehat{f}, \chi^{-1} \cdot |_{\mathbb{A}_K})}{\Lambda(\chi^{-1} \cdot |_{\mathbb{A}_K})} = \epsilon(\chi) \frac{\zeta(f, \chi)}{\Lambda(\chi)}.$$

Divide this by the functional equation for the global ζ -integral. □