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Overview

Consider the Riemann ζ-function

ζ(s) :=
∑
n∈N+

1

ns
.

Theorem (Riemann (1859))
ζ(s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation Z (s) = Z (1− s) where

Z (s) := π− s
2 Γ
( s
2

)
· ζ(s).

Sketch of proof.
Write Z (s) as a real integral of the theta series Θ(z) :=

∑
n∈Z e

−πn2z .
The Poisson summation formula for Z ⊂ R relates Θ(z) and Θ(1/z).

Can you generalise this to a number field K?
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Overview

Consider the Dedekind ζ-function

ζK (s) :=
∑

0̸=I⊴OK

1

Nm(I )s
.

Theorem (Hecke (1917))
ζK (s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation ZK (s) = ZK (1− s) where

ZK (s) := |∆K |
s
2 ·
(
π− s

2 Γ
( s
2

))r1
·
(
2(2π)−sΓ(s)

)r2 · ζK (s).
Sketch of proof.
Write ZK (s) as a real integral of a generalised theta series ΘK (s) and
apply the Poisson summation formula for a lattice in Rn.

Can you explain the Γ-factors in the functional equation? Can you
generalise this to L-functions L(χ, s) twisted by characters?
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Overview

Tate (1950) answered both questions by giving a different proof of this.
Idea: lift ζK (s) or L(χ, s) into global ζ-integrals over the locally compact
topological group of idèles A×

K and apply techniques of Fourier analysis.

Note that there is an Euler product

ZK (s) = |∆K |
s
2 ·
(
π− s

2 Γ
( s
2

))r1
·
(
2(2π)−sΓ(s)

)r2 · ∏
v∈V f

K

( ∞∑
n=0

q−ns
v

)
,

where V f
K is the set of primes of K . On the other hand,

A×
K = (R×)r1 × (C×)r2 ×

∏
v∈V f

K

K×
v .

Idea: the global ζ-integral over A×
K is the product of local ζ-integrals over

K×
v , and the Γ-factors are local ζ-integrals at the archimedean places.
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Local theory — Fourier analysis

Let F be a completion of a number field Kv , so F/R or F/Qp.

For F = R, the Fourier transform

f̂ (y) =

∫ ∞

−∞
e−2πixy f (x)dx

has three components. These are

▶ the integrable function f ,

▶ the Lebesgue measure dx , and

▶ the additive factor e−2πixy .

Each of these can be generalised for F = C and F/Qp.
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Local theory — Haar measures

A locally compact topological group G can be endowed with a
translation-invariant Haar measure µG =

∫
dGx unique up to scaling.

Examples

▶ Let dRx := dx be the Lebesgue measure, and let dR×x := dRx/|x |R.
▶ Let dC(x + iy) := 2dxdy be twice the Lebesgue measure, and let

dC×z := dCz/|z |C.
▶ Normalise dQpx such that µQp (Zp) := 1, so that

µQp (a+ pnZp) = µQp (p
nZp) = p−nµQp (Zp) = p−n,

for all a ∈ Qp, and let

dQ×
p
x :=

1

1− p−1

dQpx

|x |v
,

so that µQ×
p
(Z×

p ) = 1. If G/Qp, then µG and µG× should account

for the valuation δv of the different ideal DG/Qp
⊴ OG .
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Local theory — Schwartz–Bruhat functions

What do you integrate over F×? Schwartz–Bruhat functions F → C.
▶ If F = R, this is a function such that for all n ∈ N and m ∈ N,

lim
|x|→∞

(
|x |n

∣∣∣∣dmfdxm

∣∣∣∣) = 0.

Example
Let f (x) = f0(x) := e−πx2

. Then∫
R×

f (x)|x |sRdR×x = 2

∫ ∞

0

e−πx2

x s
dx

x

=

∫ ∞

0

e−y
(y
π

) s
2 dy

y
y = πx2

= π− s
2 Γ
( s
2

)
=: ΓR(s).
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Local theory — Schwartz–Bruhat functions

What do you integrate over F×? Schwartz–Bruhat functions F → C.
▶ If F = C, this is a function such that for all n ∈ N and m1,m2 ∈ N,

lim
|x+iy |→∞

(
|x + iy |nC

∣∣∣∣ ∂m1+m2 f

∂xm1∂ym2

∣∣∣∣
C

)
= 0.

Example
Let f (z) = f0(z) :=

1
π e

−2πzz . Then∫
C×

f (z)|z |sCdC×z = . . .

= 2(2π)−sΓ(s)

=: ΓC(s).
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Local theory — Schwartz–Bruhat functions

What do you integrate over F×? Schwartz–Bruhat functions F → C.
▶ If F = Kv/Qp, this is a linear combination of characteristic functions

Ia+πn
vOv (x) =

{
1 if x ∈ a+ πn

vOv ,

0 if x /∈ a+ πn
vOv ,

Example
Let f (x) = f0(x) := IZp (x). Then∫

Q×
p

f (x)|x |spdQ×
p
x =

1

1− p−1

∫
Zp

|x |sp
dQpx

|x |p

=
∞∑
n=0

pn−ns

1− p−1

∫
pnZp\pn+1Zp

dQpx =
∞∑
n=0

p−ns .

If F/Qp, let f0(x) := IOF
(x) instead.
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Local theory — additive characters

A Schwartz–Bruhat function f : F → C has a Fourier transform

f̂ (y) :=

∫
F

ψF (xy)f (x)dF x ,

where ψF : F → C is an additive character.

▶ If F = R, then ψR(x) := e−2πix .

▶ If F = C, then ψC(z) := e−2πi(z+z).

▶ If F = Qp, then ψQp (x) := e2πiy , where y ∈ Z[p−1] is such that
x ∈ y + Zp. If F/Qp, apply the trace tr : F → Qp first.

These are defined in such a way so that the Fourier inversion formulâ̂
f (x) = f (−x) holds, giving a duality between ψF and dF x . Indeed̂̂
f0 = f0, which is necessary in the Poisson summation formula.
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Local theory — ζ-integrals

Let f : F → C be a Schwartz–Bruhat function, and let χ : F× → C× be
a multiplicative character. The local ζ-integral is defined to be

ζF (f , χ) :=

∫
F×

f (x)χ(x)dF×x ,

which is independent of the dual pair (ψF ,dF x).

Theorem (Functional equation for the local ζ-integral)
There is a meromorphic function LF : Hom(F×,C×) → C× and a
holomorphic function ϵF : Hom(F×,C×) → C× such that

ζF (f̂ , χ
−1| · |F )

LF (χ−1| · |F )
= ϵF (χ)

ζF (f , χ)

LF (χ)
.

Here LF (χ) is the local L-factor and ϵF (χ) is the local ϵ-factor, which
are both independent of the choice of f . The local root number is then
defined to be wF (χ) := ϵF (χ)/|ϵF (χ)| ∈ U(1).

11 / 21



Local theory — ϵ-factors

Determine multiplicative characters χ : F× → C× completely.

▶ Let F = R. Then

χ(x) = η(x)|x |sR, η ∈ {1, sgn}.

▶ If η = 1, set f (x) := f0(x) = e−πx2 and LR(χ) := ΓR(s).
Then compute ϵR(χ) = 1.

▶ If η = sgn, set f (x) := xe−πx2 and LR(χ) := ΓR(s + 1).
Then compute ϵR(χ) = −i .

▶ Let F = C. Then

χ(z) = (z/
√
zz)n|z |sC, n ∈ Z.

▶ If n = 0, set f (z) := f0(z) =
1
π
e−2πzz and LC(χ) := ΓC(s).

Then compute ϵC(χ) = 1.
▶ In general, set f (z) := 1

π
zne−2πzz and LC(χ) := ΓC(s +

1
2
|n|).

Then compute ϵC(χ) = i−|n|.
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Local theory — ϵ-factors

Determine multiplicative characters χ : F× → C× completely.

▶ Let F = Kv/Qp. The conductor of χ is the least n ∈ N such that

χ((1 + πn
vOv ) ∩ O×

v ) = 1.

If n = 0, then χ is said to be unramified.
▶ If n = 0, set f := IOv and LKv (χ) := (1− χ(πv )

−1)−1.
Then compute

ϵKv (χ) = q
δv
2

v χ(πv )
δv .

▶ If n > 0, set f := I1+πn
vOv and LKv (χ) := 1.

Then compute

ϵKv (χ) =

∫
K×
v

ψv (x)χ(x)
−1dKv x .
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Local theory — ϵ-factors

Determine multiplicative characters χ : F× → C× completely.

F χ LF (χ) ϵF (χ)

R |x |sR ΓR(s) 1

R sgn(x)|x |sR ΓR(s + 1) −i

C (z/
√
zz)n|z |sC ΓC(s +

1
2 |n|) i−|n|

Kv unramified (1− χ(πv )
−1)−1 q

δv
2
v χ(πv )

δv

Kv ramified 1
∫
K×

v
ψv (x)χ(x)

−1dKv x
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞

K be the set of places of a number field K .

Consider the adèle ring

AK :=

{
(xv )v∈VK

∈
∏
v∈VK

Kv : xv ∈ Ov for almost all v ∈ VK

}
.

Its unit group is the idèle group

A×
K :=

{
(xv )v∈VK

∈
∏
v∈VK

K×
v : xv ∈ O×

v for almost all v ∈ VK

}
.

Example
If K = Q, then

AQ ∼= R×
⋃

n∈N+

1

n

∏
p<∞

Zp.
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞

K be the set of places of a number field K .

The idèle group is endowed with the restricted product topology such that∏
v∈S

Uv ×
∏

v∈VK\S

O×
v ,

is an open basis for some finite V∞
K ⊆ S ⊂ VK and some open Uv ⊆ K×

v .

There is a diagonal embedding K× ↪→ A×
K . By the product formula,

|x |AK
:=

∏
v∈VK

|x |v = 1, x ∈ K×.

By Tychonoff’s theorem, both the idèle group A×
K and the idèle class

group CK := A×
K /K

× are locally compact topological groups.
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

Examples

▶ A Dirichlet character ϕ : (Z/nZ)× → C× induces a Hecke character

CQ ∼= R+ ×
∏
p<∞

Z×
p ↠

∏
p|n

(Zp/nZp)
× ∼= (Z/nZ)× ϕ−→ C×

of finite order. Indeed, Hecke characters of Q of finite order
correspond precisely to primitive Dirichlet characters of Q.

▶ In fact, any Hecke character of Q is of the form η| · |sAK
for some

s ∈ C, where η is a Hecke character of finite order.

▶ In general, a Hecke character χ : CK → C× is uniquely determined
by local multiplicative characters χ|K×

v
: K×

v → C×, which are

unramified, so χ|K×
v
(O×

v ) = 1, for almost all v ∈ VK .
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

A Hecke L-function of χ is

L(χ) :=
∏
v∈V f

K

LKv (χ|K×
v
),

where LKv are the local L-factors

LKv (χ) =

{
(1− χ(πv ))

−1 if χ is unramified,

1 if χ is not unramified.

Examples

▶ If χ = | · |sAK
, then L(χ) is the Dedekind ζ-function ζK (s).

▶ If K = Q and χ has finite order, then L(χ) is the Dirichlet
L-function of a primitive Dirichlet character.
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Global theory — Fourier analysis

The three components for the global Fourier transform are simply defined
as the product of their local counterparts with the unramified condition.

▶ The global Schwartz–Bruhat functions on AK are linear
combinations of products of local Schwartz–Bruhat functions
fv : Kv → C such that fv = IOv for almost all v ∈ VK .

▶ The global Haar measure on AK is such that∫
AK

f (x)dAK
x :=

∏
v∈VK

∫
Kv

f |Kv (x)dKv x .

▶ The global additive character on AK is such that

ψAK
((xv )v∈VK

) :=
∏
v∈VK

ψKv (xv ).

By construction, since the Fourier inversion formula holds in all
completions of K , the Poisson summation formula holds in AK .
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Global theory — ζ-integrals

Let f : AK → C be a Schwartz–Bruhat function, and let χ : CK → C× be
a Hecke character. The global ζ-integral is defined to be

ζ(f , χ) :=
∏
v∈VK

ζKv (f |K×
v
, χ|K×

v
),

which is an infinite product.

Theorem (Functional equation for the global ζ-integral)
ζ has a meromorphic continuation to C and satisfies a functional equation

ζ(f , χ) = ζ(f̂ , χ−1| · |AK
).

Sketch of proof.
The Poisson summation formula AK relates f and f̂ .
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Global theory — ζ-integrals

Theorem (Tate (1950))
L(χ) has a meromorphic continuation to C and satisfies a functional
equation Λ(χ) = ϵ(χ)Λ(χ−1| · |AK

) where

Λ(χ) := LR(s)
r1 · LC(s)r2 · L(χ), ϵ(χ) :=

∏
v∈VK

ϵKv (χ).

Here ϵ(χ) is the global ϵ-factor, and similarly the global root number
is defined to be w(χ) :=

∏
v∈VK

wKv (χ) ∈ U(1).

Proof.
The product of the functional equations for the local ζ-integrals is

ζ(f̂ , χ−1| · |AK
)

Λ(χ−1| · |AK
)

= ϵ(χ)
ζ(f , χ)

Λ(χ)
.

Divide this by the functional equation for the global ζ-integral.
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