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Overview

Consider the Riemann (-function

(o)=Y -

neNTt

Theorem (Riemann (1859))

¢(s) has an analytic continuation to C with simple poles at s = 0,1 and
satisfies a functional equation Z(s) = Z(1 — s) where

Sketch of proof.
Write Z(s) as a real integral of the theta series ©(z) := ) _, e~z
The Poisson summation formula for Z C R relates ©(z) and ©(1/z). O

Can you generalise this to a number field K7
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Overview

Consider the Dedekind (-function

k()= > le(/)s‘

0£1<0k

Theorem (Hecke (1917))

Ck(s) has an analytic continuation to C with simple poles at s = 0,1 and
satisfies a functional equation Zk(s) = Zx(1 — s) where

s

Zi(s) = laxlz - (721 (£))" - (22m) T ()" - ()

Sketch of proof.

Write Zk(s) as a real integral of a generalised theta series ©k(s) and
apply the Poisson summation formula for a lattice in R". O

Can you explain the I'-factors in the functional equation? Can you
generalise this to L-functions L(x;, s) twisted by characters?
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Overview
Tate (1950) answered both questions by giving a different proof of this.
Idea: lift k(s) or L(x,s) into global ¢-integrals over the locally compact
topological group of ideéles A and apply techniques of Fourier analysis.
Note that there is an Euler product
B -2 s n —s r - —ns
Zi(s) = 18klZ - (=27 (3)) - (22m)~T(s) " 1 (Z % ) ,
veV, \n=

where V[ is the set of primes of K. On the other hand,

Ag = (R¥)" x (€)= x J] K-

veE V,z

Idea: the global ¢-integral over Ay is the product of local ¢-integrals over
K¢, and the I'-factors are local (-integrals at the archimedean places.
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Local theory — Fourier analysis
Let F be a completion of a number field K,, so F/R or F/Q,.

For F = R, the Fourier transform
)= [ e mritods

has three components. These are
» the integrable function f,
» the Lebesgue measure dx, and

> the additive factor e 27

Each of these can be generalised for F = C and F/Q,.
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Local theory — Haar measures

A locally compact topological group G can be endowed with a
translation-invariant Haar measure ;16 = [ dgx unique up to scaling.
Examples

» Let drx := dx be the Lebesgue measure, and let dgx x := drx/|x|r.

> Let de(x + iy) := 2dxdy be twice the Lebesgue measure, and let
dexz :=dcz/|zlc.

» Normalise dg,x such that uq,(Z,) := 1, so that

n

po,(a+ p"Zp) = po,(P"Zp) = p "o, (Zp) = p~",
for all a € Qp, and let

1 de X

d X = ;
QPX :I-fpi1 |X|v

so that /i (Zy) = 1. If G/Qp, then g and jigx should account
for the valuation 4, of the different ideal D¢/q, < Og.
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Local theory — Schwartz—Bruhat functions

What do you integrate over F*? Schwartz—Bruhat functions F — C.
» If F =R, this is a function such that for all n € N and m € N,

lim (|x|” ) =0.
|x|— o0

dmf

dxm

Example
Let f(x) = fo(x) := ™. Then
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Local theory — Schwartz—Bruhat functions

What do you integrate over F*? Schwartz—Bruhat functions F — C.
» If F =C, this is a function such that for all n € N and my, m; € N,
) 0.

C

am1+m2 f
OxmQym:

lim <|x + iyl

|x—+iy|—o0

Example
Let f(z) = fo(z) := Le=?7?%. Then

/ f(2)|z|gdexz = ...
Ccx

= 2(2m) 5T (s)
=: Fc(s).
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Local theory — Schwartz—Bruhat functions

What do you integrate over F*? Schwartz—Bruhat functions F — C.

> If F = K,/Qp, this is a linear combination of characteristic functions

1 ifxea+n)O,,

L. .. _
0, (X) {o if x ¢ at 170,

Example
Let f(x) = fo(x) :=Iz,(x). Then

1 d@ X
FO0)|xI5d Xx:i/ x|z 2
/pr P L—p=t )z, P Ixlp

n=0

If F/Qp, let fo(x) := Lo, (x) instead.

o n—ns
=S [ der =
p
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Local theory — additive characters

A Schwartz—Bruhat function f : F — C has a Fourier transform
)= [ velonfdex.

where g : F — C is an additive character.
> If F =R, then ¢p(x) := e 2™
> If F =C, then tic(z) := e~ 2m(z+2),

> If F =Q,, then g, (x) := €™, where y € Z[p~'] is such that
X €y +Zp. If F/Qp, apply the trace tr: F — Q, first.

These are defined in such a way so that the Fourier inversion formula
F(x) = f(—x) holds, giving a duality between ¥¢ and dgx. Indeed

fo = fy, which is necessary in the Poisson summation formula.
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Local theory — (-integrals

Let f : F — C be a Schwartz—Bruhat function, and let x : F* — C* be
a multiplicative character. The local (-integral is defined to be

Cr(f,x) = /Fx f(x)x(x)dpxx,

which is independent of the dual pair (¢r, drx).

Theorem (Functional equation for the local (-integral)

There is a meromorphic function Lg : Hom(F* C*) — C* and a
holomorphic function eg : Hom(F>*,C*) — C* such that

CF(F XM - |F)
Le(x71 - |F)

~ Y

Here Lg(x) is the local L-factor and eg(x) is the local e-factor, which
are both independent of the choice of f. The local root number is then
defined to be wr(x) := er(x)/ler(x)| € U(1).
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Local theory — e-factors

Determine multiplicative characters x : F* — C* completely.
» Let F =R. Then

x(x) =n()Ix[z,  ne{lsen}.

> If n =1, set f(x) := fo(x) = e ™ and Lr(x) := r(s).
Then compute er(x) = 1.

> If n = sgn, set f(x) := xe ™ and Lr(x) :=Tr(s+1).
Then compute er(x) =

» Let F=C. Then
x(z) = (z/VzZ)"|z|¢, ne€Z.

> If n=0, set f(z) :=fo(z) = 2e > and Lc(x) := Mc(s).
Then compute ec(x) = 1.
> In general, set f(z) := 22"e7*"*% and Lc(x) := le(s + 1|nl).

—Inl

Then compute ec(x) =i
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Local theory — e-factors
Determine multiplicative characters x : F* — C* completely.
» Let F = K,/Qp. The conductor of x is the least n € N such that
X(L+770,)NOJ) = 1.

If n =0, then x is said to be unramified.
> If n=0, set f :=1Tp, and Lk, (x) := (1 — x(m,) 1)L
Then compute

>

ex, (X) = a2 x(m)™.
> If n>0, set f :=Ti1nno, and Lk, (x) :=1.

Then compute

ex, (X) = p Pu(x)x(x) " dk, x.
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Local theory — e-factors

Determine multiplicative characters x : F* — C* completely.

F X Lr(x) er(X)

R Ix|% Mr(s) 1

R | sgn(x)|x|3 Me(s+1) —i

¢ | (z/vaEY Izl | els+ L) =

K, | unramified | (1— x(m,)" 57! \%X(wv)év

K, ramified 1 fKVx Dy (x)x(x)"tdk, x
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Global theory — adeles and ideles

Let Vx = VL U Vi be the set of places of a number field K.
Consider the adéle ring
Ag = {(Xv)veVK € H K, : x, € O, for almost all v € VK} .
ve Vg
Its unit group is the idele group

Ay = {(XV)Ve\/K € H K :x, € O for almost all v € VK}.
ve Vi

Example
If K=0Q, then

Ag 2R x U%HZP.

neNt  p<oo
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Global theory — adeles and ideles

Let Vx = VL U Vi be the set of places of a number field K.

The idele group is endowed with the restricted product topology such that

[Tuvx I o

ves veVik\S

is an open basis for some finite Vg° C S C Vi and some open U, C K*.

There is a diagonal embedding K* < Ag. By the product formula,

Xlaw = ] Ixlb =1,  xeK*.
VEVK

By Tychonoff's theorem, both the idele group Ay and the idele class
group Cx := A /K> are locally compact topological groups.
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Global theory — Hecke characters

A Hecke character is a character of the idele class group, that is a
continuous homomorphism Cx — C* with the discrete topology on C*.

Examples

» A Dirichlet character ¢ : (Z/nZ)* — C* induces a Hecke character

Co =R x H Ly ~ l_I(Zp/”ZP)X = (2/nZ)* 2 ¢

p<oo pln

of finite order. Indeed, Hecke characters of Q of finite order
correspond precisely to primitive Dirichlet characters of Q.

> In fact, any Hecke character of Q is of the form 7| - |3, for some
s € C, where 7 is a Hecke character of finite order.

» In general, a Hecke character x : Cx — C* is uniquely determined
by local multiplicative characters x|, x : K)* — C*, which are
unramified, so x|, (O) = 1, for almost all v € V.
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Global theory — Hecke characters

A Hecke character is a character of the idele class group, that is a
continuous homomorphism Cx — C* with the discrete topology on C*.

A Hecke L-function of y is

L) == [T Lr (el

vE Vé

where Lk, are the local L-factors

1—x(m,))"t if x is unramified,
Lm)—{( x(m) T ifx

1 if x is not unramified.

Examples

> If x = |, then L(x) is the Dedekind (-function (k(s).

> If K =Q and x has finite order, then L(x) is the Dirichlet
L-function of a primitive Dirichlet character.
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Global theory — Fourier analysis
The three components for the global Fourier transform are simply defined
as the product of their local counterparts with the unramified condition.

» The global Schwartz—Bruhat functions on Ay are linear
combinations of products of local Schwartz—Bruhat functions
f, : K, = C such that f, =Ip, for almost all v € V.

» The global Haar measure on Ak is such that

/ f(x)da,x =

» The global additive character on Ak is such that

dKX

veVk

wAK( Xv vEVK : H ¢K Xv

ve Vg

By construction, since the Fourier inversion formula holds in all
completions of K, the Poisson summation formula holds in Ak.

19/21



Global theory — (-integrals

Let f : Ak — C be a Schwartz—Bruhat function, and let x : Cx — C* be
a Hecke character. The global (-integral is defined to be

C(f0) =[] ¢wlf

veE Vi

KX X|KV>< )7

which is an infinite product.

Theorem (Functional equation for the global (-integral)
¢ has a meromorphic continuation to C and satisfies a functional equation

C(Fx) = CFx M- la).

Sketch of proof.

The Poisson summation formula Ak relates f and f. O
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Global theory — (-integrals

Theorem (Tate (1950))

L(x) has a meromorphic continuation to C and satisfies a functional
equation N(x) = e(X)AN(x Y| - |a,) where

AX) = Le(s)" - Le()2 - L), e(x) = [] ex(x):
ve Vi

Here €(x) is the global e-factor, and similarly the global root number
is defined to be w(x) := [], ¢\, wk,(x) € U(1).

Proof.

The product of the functional equations for the local {-integrals is
C(?’ X_1| ) |AK) C(f? X)
AXH - k) A(x)

Divide this by the functional equation for the global (-integral. O

= e(x)
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