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Overview
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n∈N+

1

ns
.

2 / 102



Overview

Consider the Riemann ζ-function

ζ(s) :=
∑
n∈N+

1

ns
.

Theorem (Riemann (1859))
ζ(s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation Z (s) = Z (1− s) where

Z (s) := π−
s
2 Γ
( s

2

)
· ζ(s).

3 / 102



Overview

Consider the Riemann ζ-function

ζ(s) :=
∑
n∈N+

1

ns
.

Theorem (Riemann (1859))
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satisfies a functional equation Z (s) = Z (1− s) where

Z (s) := π−
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2 Γ
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· ζ(s).

Sketch of proof.
Write Z (s) as a real integral of the theta series Θ(z) :=

∑
n∈Z e

−πn2z .
The Poisson summation formula for Z ⊂ R relates Θ(z) and Θ(1/z).
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Consider the Dedekind ζ-function

ζK (s) :=
∑
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1
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Theorem (Hecke (1917))
ζK (s) has an analytic continuation to C with simple poles at s = 0, 1 and
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Can you generalise this to a number field K?

Consider the Dedekind ζ-function

ζK (s) :=
∑

06=IEOK

1

Nm(I )s
.

Theorem (Hecke (1917))
ζK (s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation ZK (s) = ZK (1− s) where

ZK (s) := |∆K |
s
2 ·
(
π−

s
2 Γ
( s

2

))r1
·
(
2(2π)−sΓ(s)

)r2 · ζK (s).

Sketch of proof.
Write ZK (s) as a real integral of a generalised theta series ΘK (s) and
apply the Poisson summation formula for a lattice in Rn.
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Can you generalise this to a number field K?

Theorem (Hecke (1917))
ζK (s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation ZK (s) = ZK (1− s) where
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Here are some basic questions.

I Can you explain the Γ-factors in the functional equation?

I Can you generalise this to L-functions L(χ, s) twisted by characters?

10 / 102



Overview

Can you generalise this to a number field K?

Theorem (Hecke (1917))
ζK (s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation ZK (s) = ZK (1− s) where

ZK (s) := |∆K |
s
2 ·
(
π−

s
2 Γ
( s

2

))r1
·
(
2(2π)−sΓ(s)

)r2 · ζK (s).

Here are some basic questions.

I Can you explain the Γ-factors in the functional equation?

I Can you generalise this to L-functions L(χ, s) twisted by characters?

11 / 102



Overview

Can you generalise this to a number field K?

Theorem (Hecke (1917))
ζK (s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation ZK (s) = ZK (1− s) where

ZK (s) := |∆K |
s
2 ·
(
π−

s
2 Γ
( s

2

))r1
·
(
2(2π)−sΓ(s)

)r2 · ζK (s).

Here are some basic questions.

I Can you explain the Γ-factors in the functional equation?

I Can you generalise this to L-functions L(χ, s) twisted by characters?

12 / 102



Overview

Can you generalise this to a number field K?

Theorem (Hecke (1917))
ζK (s) has an analytic continuation to C with simple poles at s = 0, 1 and
satisfies a functional equation ZK (s) = ZK (1− s) where

ZK (s) := |∆K |
s
2 ·
(
π−

s
2 Γ
( s

2

))r1
·
(
2(2π)−sΓ(s)

)r2 · ζK (s).

Here are some basic questions.

I Can you explain the Γ-factors in the functional equation?

I Can you generalise this to L-functions L(χ, s) twisted by characters?

Tate (1950) answered both questions by giving a different proof of this.

13 / 102



Overview

Can you generalise this to a number field K?

Theorem (Hecke (1917))
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Here are some basic questions.

I Can you explain the Γ-factors in the functional equation?

I Can you generalise this to L-functions L(χ, s) twisted by characters?

Tate (1950) answered both questions by giving a different proof of this.

Idea: lift ζK (s) or L(χ, s) into global ζ-integrals over the locally compact
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Idea: lift ζK (s) or L(χ, s) into global ζ-integrals over the locally compact
topological group of idèles A×K and apply techniques of Fourier analysis.

Note that there is an Euler product

ζK (s) =
∏
v∈V f

K

1

1− q−sv
=
∏
v∈V f

K

( ∞∑
n=0

q−nsv

)
,

where V f
K is the set of primes of K .
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Idea: lift ζK (s) or L(χ, s) into global ζ-integrals over the locally compact
topological group of idèles A×K and apply techniques of Fourier analysis.

Note that there is an Euler product

ZK (s) = |∆K |
s
2 ·
(
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2 Γ
( s

2

))r1
·
(
2(2π)−sΓ(s)

)r2 · ∏
v∈V f

K

( ∞∑
n=0

q−nsv

)
,

where V f
K is the set of primes of K . On the other hand,

A×K = (R×)r1 × (C×)r2 ×
—∏

v∈V f
K

K×v .

Idea: the global ζ-integral over A×K is the product of local ζ-integrals over
K×v , and the Γ-factors are local ζ-integrals at the archimedean places.
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Local theory — Fourier analysis

Let F be a completion of a number field Kv , so F/R or F/Qp.
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has three components.
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Local theory — Fourier analysis

Let F be a completion of a number field Kv , so F/R or F/Qp.

For F = R, the Fourier transform

f̂ (y) =

∫ ∞
−∞

e−2πixy f (x) dx

has three components. These are

I the integrable function f ,

I the Lebesgue measure dx , and

I the additive factor e−2πixy .

Each of these can be generalised for F = C and F/Qp.
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Local theory — Haar measures

How do you integrate over F×?
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dGx unique up to scaling.
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Local theory — Haar measures

How do you integrate over F×?

A locally compact topological group G can be endowed with a
translation-invariant Haar measure µG =

∫
dGx unique up to scaling.

Examples

I Let dRx := dx be the Lebesgue measure, and let

dR×x :=
dRx

|x |R
.

I Let dC(x + iy) := 2dxdy be twice the Lebesgue measure
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How do you integrate over F×?

A locally compact topological group G can be endowed with a
translation-invariant Haar measure µG =

∫
dGx unique up to scaling.

Examples

I Let dRx := dx be the Lebesgue measure, and let

dR×x :=
dRx

|x |R
.

I Let dC(x + iy) := 2dxdy be twice the Lebesgue measure, and let

dC×z :=
dCz

|x |C
.
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Local theory — Haar measures

How do you integrate over F×?

A locally compact topological group G can be endowed with a
translation-invariant Haar measure µG =

∫
dGx unique up to scaling.

Examples

I Normalise dQpx such that µQp (Zp) := 1
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Local theory — Haar measures

How do you integrate over F×?

A locally compact topological group G can be endowed with a
translation-invariant Haar measure µG =

∫
dGx unique up to scaling.

Examples

I Normalise dQpx such that µQp (Zp) := 1, so that

µQp (a + pnZp) = µQp (pnZp) = p−nµQp (Zp) = p−n,

for all a ∈ Qp
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Local theory — Haar measures

How do you integrate over F×?

A locally compact topological group G can be endowed with a
translation-invariant Haar measure µG =

∫
dGx unique up to scaling.

Examples

I Normalise dQpx such that µQp (Zp) := 1, so that

µQp (a + pnZp) = µQp (pnZp) = p−nµQp (Zp) = p−n,

for all a ∈ Qp, and let

dQ×
p
x :=

1

1− p−1
dQpx

|x |v
,

so that µQ×
p

(Z×p ) = 1.
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Local theory — Haar measures

How do you integrate over F×?

A locally compact topological group G can be endowed with a
translation-invariant Haar measure µG =

∫
dGx unique up to scaling.

Examples

I Normalise dQpx such that µQp (Zp) := 1, so that

µQp (a + pnZp) = µQp (pnZp) = p−nµQp (Zp) = p−n,

for all a ∈ Qp, and let

dQ×
p
x :=

1

1− p−1
dQpx

|x |v
,

so that µQ×
p

(Z×p ) = 1. If G/Qp, then µG and µG× should account

for the valuation δv of the different ideal DG/Qp
E OG .
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Local theory — Schwartz-Bruhat functions

What do you integrate over F×?
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What do you integrate over F×?

The Schwartz-Bruhat functions f : F → C.
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Local theory — Schwartz-Bruhat functions

What do you integrate over F×?

The Schwartz-Bruhat functions f : F → C.

I If F = R, this is a function such that for all n ∈ N and m ∈ N,

lim
|x|→∞

(
|x |n

∣∣∣∣dmfdxm

∣∣∣∣) = 0.
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Let f (x) = f0(x) := e−πx

2

.
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What do you integrate over F×?

The Schwartz-Bruhat functions f : F → C.

I If F = R, this is a function such that for all n ∈ N and m ∈ N,

lim
|x|→∞

(
|x |n

∣∣∣∣dmfdxm

∣∣∣∣) = 0.

Example
Let f (x) = f0(x) := e−πx

2

. Then∫
R×

f (x)|x |sR dR×x = 2

∫ ∞
0

e−πx
2

x s
dx

x

=

∫ ∞
0

e−y
(y
π

) s
2 dy

y
y = πx2

= π−
s
2 Γ
( s

2

)
=: ΓR(s).
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The Schwartz-Bruhat functions f : F → C.

I If F = R, this is a function such that for all n ∈ N and m ∈ N,

lim
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(
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I If F = C, this is a function such that for all n ∈ N and m1,m2 ∈ N,
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C
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I If F = R, this is a function such that for all n ∈ N and m ∈ N,

lim
|x|→∞

(
|x |n

∣∣∣∣dmfdxm
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I If F = C, this is a function such that for all n ∈ N and m1,m2 ∈ N,
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What do you integrate over F×?

The Schwartz-Bruhat functions f : F → C.

I If F = R, this is a function such that for all n ∈ N and m ∈ N,

lim
|x|→∞

(
|x |n

∣∣∣∣dmfdxm

∣∣∣∣) = 0.

I If F = C, this is a function such that for all n ∈ N and m1,m2 ∈ N,

lim
|x+iy |→∞

(
|x + iy |nC

∣∣∣∣ ∂m1+m2 f

∂xm1∂ym2

∣∣∣∣
C

)
= 0.

Example
Let f (z) = f0(z) := 1

π e
−2πzz . Then∫

C×
f (z)|z |sC dC×z = · · · = 2(2π)−sΓ(s) =: ΓC(s).

42 / 102



Local theory — Schwartz-Bruhat functions

What do you integrate over F×?

The Schwartz-Bruhat functions f : F → C.

I If F = Kv/Qp, this is a linear combination of characteristic functions

Ia+πn
vOv (x) =

{
1 x ∈ a + πn

vOv

0 x /∈ a + πn
vOv

.
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I If F = Kv/Qp, this is a linear combination of characteristic functions

Ia+πn
vOv (x) =

{
1 x ∈ a + πn

vOv

0 x /∈ a + πn
vOv

.

Example
Let f (x) = f0(x) := IZp (x). Then∫

Q×
p

f (x)|x |sp dQ×
p
x =

1

1− p−1

∫
Zp

|x |sp
dQpx

|x |p

=
∞∑
n=0

pn−ns

1− p−1

∫
pnZp\pn+1Zp

dQpx =
∞∑
n=0

p−ns .
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What do you integrate over F×?

The Schwartz-Bruhat functions f : F → C.

I If F = Kv/Qp, this is a linear combination of characteristic functions

Ia+πn
vOv (x) =

{
1 x ∈ a + πn

vOv

0 x /∈ a + πn
vOv

.

Example
Let f (x) = f0(x) := IZp (x). Then∫

Q×
p

f (x)|x |sp dQ×
p
x =

1

1− p−1

∫
Zp

|x |sp
dQpx

|x |p

=
∞∑
n=0

pn−ns

1− p−1

∫
pnZp\pn+1Zp

dQpx =
∞∑
n=0

p−ns .

If F/Qp, let f0(x) := IOF
(x) instead.
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Local theory — additive characters

Why do you need Schwartz-Bruhat functions?

I If F = R, then ψR(x) := e−2πix .

I If F = C, then ψC(z) := e−2πi(z+z).

I If F = Qp, then ψQp (x) := e2πiy , where y ∈ Z[p−1] is such that
x ∈ y + Zp.
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Local theory — additive characters

Why do you need Schwartz-Bruhat functions?

A Schwartz-Bruhat function f : F → C has a Fourier transform

f̂ (y) :=

∫
F

ψF (xy)f (x) dF x ,

where ψF : F → C is an additive character.

I If F = R, then ψR(x) := e−2πix .

I If F = C, then ψC(z) := e−2πi(z+z).

I If F = Qp, then ψQp (x) := e2πiy , where y ∈ Z[p−1] is such that
x ∈ y + Zp. If F/Qp, apply the trace Tr : F → Qp first.

These are defined in such a way so that the Fourier inversion formulâ̂
f (x) = f (−x) holds, giving a duality between ψF and dF x .
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Why do you need Schwartz-Bruhat functions?

A Schwartz-Bruhat function f : F → C has a Fourier transform

f̂ (y) :=

∫
F

ψF (xy)f (x) dF x ,

where ψF : F → C is an additive character.

I If F = R, then ψR(x) := e−2πix .

I If F = C, then ψC(z) := e−2πi(z+z).

I If F = Qp, then ψQp (x) := e2πiy , where y ∈ Z[p−1] is such that
x ∈ y + Zp. If F/Qp, apply the trace Tr : F → Qp first.

These are defined in such a way so that the Fourier inversion formulâ̂
f (x) = f (−x) holds, giving a duality between ψF and dF x . Indeed̂̂
f0 = f0, which is necessary in the Poisson summation formula.
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Local theory — ζ-integrals

What can you prove with this?
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Local theory — ζ-integrals

What can you prove with this?

Let f : F → C be a Schwartz-Bruhat function, and let χ : F× → C× be
a multiplicative character.
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Local theory — ζ-integrals

What can you prove with this?

Let f : F → C be a Schwartz-Bruhat function, and let χ : F× → C× be
a multiplicative character. The local ζ-integral is defined to be

ζF (f , χ) :=

∫
F×

f (x)χ(x) dF×x ,

which is independent of the dual pair (ψF ,dF x).
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Local theory — ζ-integrals

What can you prove with this?

Let f : F → C be a Schwartz-Bruhat function, and let χ : F× → C× be
a multiplicative character. The local ζ-integral is defined to be

ζF (f , χ) :=

∫
F×

f (x)χ(x) dF×x ,

which is independent of the dual pair (ψF ,dF x).

Example
ζF (f0, | · |sF ) are the Γ-factors and local Euler factors.
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Local theory — ζ-integrals

What can you prove with this?

Let f : F → C be a Schwartz-Bruhat function, and let χ : F× → C× be
a multiplicative character. The local ζ-integral is defined to be

ζF (f , χ) :=

∫
F×

f (x)χ(x) dF×x ,

which is independent of the dual pair (ψF ,dF x).

Example
ζF (f0, | · |sF ) are the Γ-factors and local Euler factors.

Theorem (Functional equation for the local ζ-integral)
There is a meromorphic function LF : Homcts(F

×,C×)→ C× and a
holomorphic function εF : Homcts(F

×,C×)→ C× such that

ζF (f̂ , χ−1| · |F )

LF (χ−1| · |F )
= εF (χ)

ζF (f , χ)

LF (χ)
.
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Local theory — ζ-integrals

What can you prove with this?

Theorem (Functional equation for the local ζ-integral)
There is a meromorphic function LF : Homcts(F

×,C×)→ C× and a
holomorphic function εF : Homcts(F

×,C×)→ C× such that

ζF (f̂ , χ−1| · |F )

LF (χ−1| · |F )
= εF (χ)

ζF (f , χ)

LF (χ)
.

Here LF (χ) is the local L-factor and εF (χ) is the local ε-factor, which
are both independent of the choice of f .
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Local theory — ζ-integrals

What can you prove with this?

Theorem (Functional equation for the local ζ-integral)
There is a meromorphic function LF : Homcts(F

×,C×)→ C× and a
holomorphic function εF : Homcts(F

×,C×)→ C× such that

ζF (f̂ , χ−1| · |F )

LF (χ−1| · |F )
= εF (χ)

ζF (f , χ)

LF (χ)
.

Here LF (χ) is the local L-factor and εF (χ) is the local ε-factor, which
are both independent of the choice of f .

The local root number is then defined to be

wF (χ) :=
εF (χ)

|εF (χ)|
∈ U(1).
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Local theory — ε-factors

How do you compute εF (χ)?
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Local theory — ε-factors

How do you compute εF (χ)?

Determine multiplicative characters χ : F× → C× completely.
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Local theory — ε-factors

How do you compute εF (χ)?

Determine multiplicative characters χ : F× → C× completely.

I Let F = R. Then

χ(x) = η(x)|x |sR, η ∈ {1, sgn}.

I If η = 1, set f (x) := f0(x) = e−πx2 and LR(χ) := ΓR(s).
Then compute εR(χ) = 1.

I If η = sgn, set f (x) := xe−πx2 and LR(χ) := ΓR(s + 1).
Then compute εR(χ) = −i .
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Determine multiplicative characters χ : F× → C× completely.

I Let F = R. Then

χ(x) = η(x)|x |sR, η ∈ {1, sgn}.

I If η = 1, set f (x) := f0(x) = e−πx2 and LR(χ) := ΓR(s).
Then compute εR(χ) = 1.

I If η = sgn, set f (x) := xe−πx2 and LR(χ) := ΓR(s + 1).
Then compute εR(χ) = −i .
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Local theory — ε-factors

How do you compute εF (χ)?

Determine multiplicative characters χ : F× → C× completely.

I Let F = R. Then

χ(x) = η(x)|x |sR, η ∈ {1, sgn}.
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Local theory — ε-factors

How do you compute εF (χ)?

Determine multiplicative characters χ : F× → C× completely.

I Let F = R. Then

χ(x) = η(x)|x |sR, η ∈ {1, sgn}.

I If η = 1, set f (x) := f0(x) = e−πx2 and LR(χ) := ΓR(s).
Then compute εR(χ) = 1.

I If η = sgn, set f (x) := xe−πx2 and LR(χ) := ΓR(s + 1).
Then compute εR(χ) = −i .

I Let F = C. Then

χ(z) = (z/
√
zz)n|z |sC, n ∈ Z.

I If n = 0, set f (z) := f0(z) = 1
π
e−2πzz and LC(χ) := ΓC(s).

Then compute εC(χ) = 1.
I In general, set f (z) := 1

π
zne−2πzz and LC(χ) := ΓC(s + 1

2
|n|).

Then compute εC(χ) = i−|n|.
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Local theory — ε-factors

How do you compute εF (χ)?
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I Let F = R. Then

χ(x) = η(x)|x |sR, η ∈ {1, sgn}.

I If η = 1, set f (x) := f0(x) = e−πx2 and LR(χ) := ΓR(s).
Then compute εR(χ) = 1.

I If η = sgn, set f (x) := xe−πx2 and LR(χ) := ΓR(s + 1).
Then compute εR(χ) = −i .

I Let F = C. Then

χ(z) = (z/
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zz)n|z |sC, n ∈ Z.
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|n|).
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Local theory — ε-factors

How do you compute εF (χ)?

Determine multiplicative characters χ : F× → C× completely.

I Let F = Kv/Qp. The conductor of χ is the least n ∈ N such that

χ((1 + πn
vOv ) ∩ O×v ) = 1.

If n = 0, then χ is said to be unramified.

I If n = 0, set f := IOv and LKv (χ) := (1− χ(πv )−1)−1.
Then compute

εKv (χ) = q
δv
2

v χ(πv )δv .

I If n > 0, set f := I1+πn
vOv and LKv (χ) := 1.

Then compute

εKv (χ) =

∫
K×
v

ψv (x)χ(x)−1 dKv x .

70 / 102



Local theory — ε-factors
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Local theory — ε-factors

How do you compute εF (χ)?

Determine multiplicative characters χ : F× → C× completely.

I Let F = Kv/Qp. The conductor of χ is the least n ∈ N such that

χ((1 + πn
vOv ) ∩ O×v ) = 1.

If n = 0, then χ is said to be unramified.
I If n = 0, set f := IOv and LKv (χ) := (1− χ(πv )−1)−1.

Then compute

εKv (χ) = q
δv
2

v χ(πv )δv .

I If n > 0, set f := I1+πn
vOv and LKv (χ) := 1.

Then compute

εKv (χ) =

∫
K×
v

ψv (x)χ(x)−1 dKv x .

72 / 102



Local theory — ε-factors

How do you compute εF (χ)?

Determine multiplicative characters χ : F× → C× completely.

F χ LF (χ) εF (χ)

R |x |sR ΓR(s) 1

R sgn(x)|x |sR ΓR(s + 1) −i

C (z/
√
zz)n|z |sC ΓC(s + 1

2 |n|) i−|n|

Kv unramified (1− χ(πv )−1)−1 q
δv
2
v χ(πv )δv

Kv ramified 1
∫
K×

v
ψv (x)χ(x)−1 dKv x
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .

Consider the adèle ring

AK :=

{
(xv )v∈VK

∈
∏
v∈VK

Kv

∣∣∣∣∣ xv ∈ Ov for almost all v ∈ VK

}
.
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .

Consider the adèle ring

AK :=

{
(xv )v∈VK

∈
∏
v∈VK

Kv

∣∣∣∣∣ xv ∈ Ov for almost all v ∈ VK

}
.

Its unit group is the idèle group

A×K :=

{
(xv )v∈VK

∈
∏
v∈VK

K×v

∣∣∣∣∣ xv ∈ O×v for almost all v ∈ VK

}
.
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .

Consider the adèle ring

AK :=

{
(xv )v∈VK

∈
∏
v∈VK

Kv

∣∣∣∣∣ xv ∈ Ov for almost all v ∈ VK

}
.

Its unit group is the idèle group

A×K :=

{
(xv )v∈VK

∈
∏
v∈VK

K×v

∣∣∣∣∣ xv ∈ O×v for almost all v ∈ VK

}
.

Example
If K = Q, then

AQ ∼= R×
⋃

n∈N+

1

n

∏
p<∞

Zp.
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .

The idèle group is endowed with the restricted product topology such that∏
v∈S

Uv ×
∏

v∈VK\S

O×v ,

is an open basis for some finite V∞K ⊆ S ⊂ VK and some open Uv ⊆ K×v .

78 / 102



Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .

The idèle group is endowed with the restricted product topology such that∏
v∈S

Uv ×
∏

v∈VK\S

O×v ,

is an open basis for some finite V∞K ⊆ S ⊂ VK and some open Uv ⊆ K×v .

There is a diagonal embedding K× ↪→ A×K .
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .

The idèle group is endowed with the restricted product topology such that∏
v∈S

Uv ×
∏

v∈VK\S

O×v ,

is an open basis for some finite V∞K ⊆ S ⊂ VK and some open Uv ⊆ K×v .

There is a diagonal embedding K× ↪→ A×K . By the product formula,

|x |AK
:=

∏
v∈VK

|x |v = 1, x ∈ K×.
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Global theory — adèles and idèles

Let VK = V f
K ∪ V∞K be the set of places of a number field K .

The idèle group is endowed with the restricted product topology such that∏
v∈S

Uv ×
∏

v∈VK\S

O×v ,

is an open basis for some finite V∞K ⊆ S ⊂ VK and some open Uv ⊆ K×v .

There is a diagonal embedding K× ↪→ A×K . By the product formula,

|x |AK
:=

∏
v∈VK

|x |v = 1, x ∈ K×.

By Tychonoff’s theorem, both the idèle group A×K and the idèle class
group CK := A×K /K× are locally compact topological groups.
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

Examples

I A Dirichlet character φ : (Z/nZ)× → C× induces a Hecke character

CQ ∼= R+ ×
∏
p<∞

Z×p �
∏
p|n

(Zp/nZp)× ∼= (Z/nZ)×
φ−→ C×

of finite order.

I In fact, any Hecke character of Q is of the form η| · |sAK
for some

s ∈ C, where η is a Hecke character of finite order.

I In general, a Hecke character χ : CK → C× is uniquely determined
by local multiplicative characters χ|K×

v
: K×v → C×, which are

unramified, so χ|K×
v

(O×v ) = 1, for almost all v ∈ VK .
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

Examples

I A Dirichlet character φ : (Z/nZ)× → C× induces a Hecke character

CQ ∼= R+ ×
∏
p<∞

Z×p �
∏
p|n

(Zp/nZp)× ∼= (Z/nZ)×
φ−→ C×

of finite order. Indeed, Hecke characters of Q of finite order
correspond precisely to primitive Dirichlet characters of Q.

I In fact, any Hecke character of Q is of the form η| · |sAK
for some

s ∈ C, where η is a Hecke character of finite order.

I In general, a Hecke character χ : CK → C× is uniquely determined
by local multiplicative characters χ|K×

v
: K×v → C×, which are

unramified, so χ|K×
v

(O×v ) = 1, for almost all v ∈ VK .
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continuous homomorphism CK → C× with the discrete topology on C×.

Examples

I A Dirichlet character φ : (Z/nZ)× → C× induces a Hecke character

CQ ∼= R+ ×
∏
p<∞

Z×p �
∏
p|n

(Zp/nZp)× ∼= (Z/nZ)×
φ−→ C×

of finite order. Indeed, Hecke characters of Q of finite order
correspond precisely to primitive Dirichlet characters of Q.

I In fact, any Hecke character of Q is of the form η| · |sAK
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

Examples

I A Dirichlet character φ : (Z/nZ)× → C× induces a Hecke character

CQ ∼= R+ ×
∏
p<∞

Z×p �
∏
p|n

(Zp/nZp)× ∼= (Z/nZ)×
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of finite order. Indeed, Hecke characters of Q of finite order
correspond precisely to primitive Dirichlet characters of Q.

I In fact, any Hecke character of Q is of the form η| · |sAK
for some

s ∈ C, where η is a Hecke character of finite order.

I In general, a Hecke character χ : CK → C× is uniquely determined
by local multiplicative characters χ|K×

v
: K×v → C×, which are

unramified, so χ|K×
v

(O×v ) = 1, for almost all v ∈ VK .
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

A Hecke L-function of χ is

L(χ) :=
∏
v∈V f

K

LKv (χ|K×
v

),

where LKv are the local L-factors

LKv (χ) =

{
(1− χ(πv ))−1 χ is unramified

1 χ is not unramified
.
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

A Hecke L-function of χ is

L(χ) :=
∏
v∈V f

K

LKv (χ|K×
v

),

where LKv are the local L-factors

LKv (χ) =

{
(1− χ(πv ))−1 χ is unramified

1 χ is not unramified
.

Examples

I If χ = | · |sAK
, then L(χ) is the Dedekind ζ-function ζK (s).

I If K = Q and χ has finite order, then L(χ) is the Dirichlet
L-function of a primitive Dirichlet character.
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Global theory — Hecke characters

A Hecke character is a character of the idèle class group, that is a
continuous homomorphism CK → C× with the discrete topology on C×.

A Hecke L-function of χ is

L(χ) :=
∏
v∈V f

K

LKv (χ|K×
v

),

where LKv are the local L-factors

LKv (χ) =

{
(1− χ(πv ))−1 χ is unramified

1 χ is not unramified
.

Examples

I If χ = | · |sAK
, then L(χ) is the Dedekind ζ-function ζK (s).

I If K = Q and χ has finite order, then L(χ) is the Dirichlet
L-function of a primitive Dirichlet character.
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Global theory — Fourier analysis

The three components for the global Fourier transform are simply defined
as the product of their local counterparts with the unramified condition.

I The global Schwartz-Bruhat functions on AK are linear combinations
of products of local Schwartz-Bruhat functions fv : Kv → C for all
v ∈ VK , such that fv = IOv for almost all v ∈ VK .

I The global Haar measure on AK is such that∫
AK

f (x) dAK
x :=

∏
v∈VK

∫
Kv

f |Kv (x) dKv x .

I The global additive character on AK is such that

ψAK
((xv )v∈VK

) :=
∏
v∈VK

ψKv (xv ).
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Global theory — Fourier analysis

The three components for the global Fourier transform are simply defined
as the product of their local counterparts with the unramified condition.

I The global Schwartz-Bruhat functions on AK are linear combinations
of products of local Schwartz-Bruhat functions fv : Kv → C for all
v ∈ VK , such that fv = IOv for almost all v ∈ VK .

I The global Haar measure on AK is such that∫
AK

f (x) dAK
x :=

∏
v∈VK

∫
Kv

f |Kv (x) dKv x .

I The global additive character on AK is such that

ψAK
((xv )v∈VK

) :=
∏
v∈VK

ψKv (xv ).

93 / 102



Global theory — Fourier analysis

The three components for the global Fourier transform are simply defined
as the product of their local counterparts with the unramified condition.

I The global Schwartz-Bruhat functions on AK are linear combinations
of products of local Schwartz-Bruhat functions fv : Kv → C for all
v ∈ VK , such that fv = IOv for almost all v ∈ VK .

I The global Haar measure on AK is such that∫
AK

f (x) dAK
x :=

∏
v∈VK

∫
Kv

f |Kv (x) dKv x .

I The global additive character on AK is such that

ψAK
((xv )v∈VK

) :=
∏
v∈VK

ψKv (xv ).

By construction, since the Fourier inversion formula holds in all
completions of K , the Poisson summation formula holds in AK .
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Global theory — ζ-integrals

Let f : AK → C be a Schwartz-Bruhat function, and let χ : CK → C× be
a Hecke character.
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Global theory — ζ-integrals

Let f : AK → C be a Schwartz-Bruhat function, and let χ : CK → C× be
a Hecke character. The global ζ-integral is defined to be

ζ(f , χ) :=
∏
v∈VK

ζKv (f |K×
v
, χ|K×

v
),

which is an infinite product.
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Global theory — ζ-integrals

Let f : AK → C be a Schwartz-Bruhat function, and let χ : CK → C× be
a Hecke character. The global ζ-integral is defined to be

ζ(f , χ) :=
∏
v∈VK

ζKv (f |K×
v
, χ|K×

v
),

which is an infinite product.

Theorem (Functional equation for the global ζ-integral)
ζ has a meromorphic continuation to C and satisfies a functional equation

ζ(f , χ) = ζ(f̂ , χ−1| · |AK
).
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Global theory — ζ-integrals

Let f : AK → C be a Schwartz-Bruhat function, and let χ : CK → C× be
a Hecke character. The global ζ-integral is defined to be

ζ(f , χ) :=
∏
v∈VK

ζKv (f |K×
v
, χ|K×

v
),

which is an infinite product.

Theorem (Functional equation for the global ζ-integral)
ζ has a meromorphic continuation to C and satisfies a functional equation

ζ(f , χ) = ζ(f̂ , χ−1| · |AK
).

Sketch of proof.
The Poisson summation formula AK relates f and f̂ .
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Global theory — ζ-integrals

Theorem (Tate (1950))
L(χ) has a meromorphic continuation to C and satisfies a functional
equation Λ(χ) = ε(χ)Λ(χ−1| · |AK

) where

Λ(χ) := LR(s)r1 · LC(s)r2 · L(χ), ε(χ) :=
∏
v∈VK

εKv (χ).
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) where

Λ(χ) := LR(s)r1 · LC(s)r2 · L(χ), ε(χ) :=
∏
v∈VK

εKv (χ).

Here ε(χ) is the global ε-factor, and similarly the global root number
is defined to be w(χ) :=

∏
v∈VK

wKv (χ) ∈ U(1).
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Global theory — ζ-integrals

Theorem (Tate (1950))
L(χ) has a meromorphic continuation to C and satisfies a functional
equation Λ(χ) = ε(χ)Λ(χ−1| · |AK

) where

Λ(χ) := LR(s)r1 · LC(s)r2 · L(χ), ε(χ) :=
∏
v∈VK

εKv (χ).

Here ε(χ) is the global ε-factor, and similarly the global root number
is defined to be w(χ) :=

∏
v∈VK

wKv (χ) ∈ U(1).

Proof.
The product of the functional equations for the local ζ-integrals is

ζ(f̂ , χ−1| · |AK
)

Λ(χ−1| · |AK
)

= ε(χ)
ζ(f , χ)

Λ(χ)
.

Divide this by the functional equation for the global ζ-integral.
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Thank you!
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