

The Tate–Shafarevich and Brauer groups

Curves over function fields

David Kurniadi Angdinata

University College London

Tuesday, 5 July 2022

Overview

Part I

- ▶ The Tate–Shafarevich group of a $\begin{cases} \text{number field} \\ \text{function field} \end{cases}$
- ▶ The Artin–Tate conjecture

Part II

- ▶ The Brauer– $\begin{cases} \text{Grothendieck} \\ \text{Azumaya} \end{cases}$ group of a $\begin{cases} \text{field} \\ \text{scheme} \end{cases}$
- ▶ The Brauer–Manin obstruction

The Tate–Shafarevich group of a number field

Let E be an elliptic curve over a number field K . Let

$$V_K := \{\text{closed points of } \text{Spec}(\mathcal{O}_K)\} \cup V_K^\infty.$$

The **Tate–Shafarevich group** is

$$\text{III}(E/K) := \ker \left(H^1(K, E) \rightarrow \prod_{v \in V_K} H^1(K_v, E) \right).$$

Note that there is a bijection

$$H^1(K, E) \xrightarrow{\sim} \text{WC}(E/K),$$

the **Weil–Châtelet group** of torsors for E/K . Thus $0 \neq C \in \text{III}(E/K)$ is a K -twist of E that is everywhere locally soluble but globally insoluble.

Example (Selmer)

The curve $3X^3 + 4Y^3 + 5Z^3 = 0$ is a \mathbb{Q} -twist of $E : X^3 + Y^3 + 60Z^3 = 0$ that is everywhere locally soluble but globally insoluble, so $\text{III}(E/\mathbb{Q}) \neq 0$.

The Tate–Shafarevich group of a number field

Let E be an elliptic curve over a number field K . Let

$$V_K := \{\text{closed points of } \text{Spec}(\mathcal{O}_K)\} \cup V_K^\infty.$$

The **Tate–Shafarevich group** is

$$\text{III}(E/K) := \ker \left(H^1(K, E) \rightarrow \prod_{v \in V_K} H^1(K_v, E) \right).$$

Conjecture (Tate–Shafarevich)

$\#\text{III}(E/K)$ is finite.

Conjecture (Birch–Swinnerton-Dyer)

Assuming TS holds,

$$\lim_{s \rightarrow 1} \frac{L(E/K, s)}{(s-1)^{\text{rk}(E/K)}} = \frac{R \cdot \#\text{III}(E/K) \cdot \tau}{\#E(K)_{\text{tor}}^2}.$$

The Tate–Shafarevich group of a function field

Let E be an elliptic curve over a function field $K = \mathbb{F}_q(C)$. Let

$$V_K := \{\text{closed points of } C\}.$$

The **Tate–Shafarevich group** is

$$\text{III}(E/K) := \ker \left(H^1(K, E) \rightarrow \prod_{v \in V_K} H^1(K_v, E) \right).$$

Conjecture (Tate–Shafarevich)

$\#\text{III}(E/K)$ is finite.

Theorem (KT03)

Assuming $TS[\ell^\infty]$ holds for some ℓ ,

$$\lim_{s \rightarrow 1} \frac{L(E/K, s)}{(s-1)^{\text{rk}(E/K)}} = \frac{R \cdot \#\text{III}(E/K) \cdot \tau}{\#E(K)_{\text{tor}}^2}.$$

The Tate–Shafarevich group of a function field

Let E be an elliptic curve over a function field $K = \mathbb{F}_q(C)$. Let

$$V_K := \{\text{closed points of } C\}.$$

The **Tate–Shafarevich group** is

$$\text{III}(E/K) := \ker \left(H^1(K, E) \rightarrow \prod_{v \in V_K} H^1(K_v, E) \right).$$

Theorem (Mil68, Mil70, ASD73)

TS holds if \mathcal{E} is constant, rational, or K3.

Theorem (Ulm12, Proposition 5.3.1)

$$\text{Br}(\mathcal{E}) \xrightarrow{\sim} \text{III}(E/K).$$

The Artin–Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_q with generic fibre E/K . Then

$$\begin{array}{ll} \text{BSD holds for } E & \xrightleftharpoons{\text{KT03}} \# \text{III}(E/K)[\ell^\infty] \text{ is finite for some } \ell \\ & \xrightleftharpoons{\text{Gro79}} \# \text{Br}(\mathcal{E})[\ell^\infty] \text{ is finite for some } \ell \\ & \xrightleftharpoons{\text{Mil75}} \text{AT (and T) holds for } \mathcal{E}. \end{array}$$

Conjecture (Artin–Tate)

Let X be a smooth projective geometrically-connected surface over \mathbb{F}_q . Then $\# \text{Br}(X)$ is finite, and if $\text{NS}(X)_{/\text{tor}} = \langle D_i \rangle$, then

$$\lim_{s \rightarrow 1} \frac{P_2(X, q^{-s})}{(1 - q^{1-s})^{\text{rk}(\text{NS}(X))}} = \frac{\# \text{Br}(X) \cdot |\det(\langle D_i, D_j \rangle_{i,j})|}{\# \text{NS}(X)_{\text{tor}}^2 \cdot q^{\chi(X, \mathcal{O}_X) - 1 + \dim \text{Pic}(X)}}.$$

Note that if $X \rightarrow C$ is flat proper with smooth geometrically-connected generic fibre X_K/K , then $\# \text{III}(\text{Jac}(X_K)/K) \sim \# \text{Br}(X)$ (LLR18).

The Brauer–Azumaya group of a field

Let K be a field. The **classical Brauer group** of K is

$$\mathrm{Br}(K) := \{\text{central simple algebras over } K\} / \sim.$$

A **central simple algebra** over K is a finite-dimensional associative K -algebra with centre K and no non-trivial proper two-sided ideals.

Examples

- ▶ Algebra of $n \times n$ matrices $\mathrm{Mat}_n(K)$ over K .
- ▶ Algebra of $n \times n$ matrices $\mathrm{Mat}_n(D)$ over a central division algebra D .
- ▶ Tensor product $A \otimes_K B$ of two CSAs A and B .
- ▶ Opposite algebra A^{op} of a CSA A .

Two CSAs A and B over K are **equivalent** if there are $n, m \in \mathbb{N}$ such that $A \otimes_K \mathrm{Mat}_n(K) \cong B \otimes_K \mathrm{Mat}_m(K)$.

Example

If $n, m \in \mathbb{N}$ and D is a CDA, then $\mathrm{Mat}_n(D) \sim \mathrm{Mat}_m(D)$.

The Brauer–Azumaya group of a field

Let K be a field. The **classical Brauer group** of K is

$$\mathrm{Br}(K) := \{\text{central simple algebras over } K\} / \sim .$$

Examples

- ▶ $\mathrm{Br}(\mathbb{F}_q) = 0$. Suffices to prove a CDA D over \mathbb{F}_q is \mathbb{F}_q . A finite division algebra D is a field K . A field K with centre \mathbb{F}_q is \mathbb{F}_q .
- ▶ $\mathrm{Br}(\mathbb{C}) = 0$. Suffices to prove a CDA D over \mathbb{C} is \mathbb{C} . If $x \in D$, then $\mathbb{C}[x]$ is an integral domain and a finite-dimensional \mathbb{C} -vector space. Thus $\mathbb{C}[x]$ is a field, but \mathbb{C} does not have finite extensions.
- ▶ $\mathrm{Br}(\mathbb{C}(X)) = 0$ for a curve X/\mathbb{C} . This is Tsen's theorem.

The Brauer–Grothendieck group of a field

Let K be a field. The **cohomological Brauer group** of K is

$$\mathrm{Br}'(K) := H^2(K, \mathbb{G}_m).$$

Theorem (CTS19, Theorem 1.3.5)

$$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}'(K).$$

Examples

- $\mathrm{Br}'(\mathbb{R}) = \frac{1}{2}\mathbb{Z}/\mathbb{Z}$. By cohomology of cyclic groups,

$$\mathrm{Br}'(\mathbb{R}) = H^2(\mathrm{Gal}(\mathbb{C}/\mathbb{R}), \mathbb{C}^\times) \cong \mathbb{R}^\times / \mathrm{Nm}_{\mathbb{C}/\mathbb{R}}(\mathbb{C}^\times) \cong \{\pm\}.$$

In fact, $\mathrm{Br}'(\mathbb{R}) = \{\mathbb{R}, \mathbb{H}\}$.

- Local class field theory gives isomorphisms

$$\mathrm{inv}_p : \mathrm{Br}'(\mathbb{Q}_p) \xrightarrow{\sim} \mathbb{Q}/\mathbb{Z}, \quad \mathrm{inv}_q : \mathrm{Br}'(\mathbb{F}_q((T))) \xrightarrow{\sim} \mathbb{Q}/\mathbb{Z}.$$

The Brauer–Grothendieck group of a field

Let K be a field. The **cohomological Brauer group** of K is

$$\mathrm{Br}'(K) := H^2(K, \mathbb{G}_m).$$

Theorem (CTS19, Theorem 1.3.5)

$$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}'(K).$$

Examples

- Global class field theory gives short exact sequences

$$0 = \varinjlim_{L/K} H^1(L/K, C_L) \rightarrow \mathrm{Br}'(\mathbb{Q}) \rightarrow \bigoplus_{v \in V_{\mathbb{Q}}} \mathrm{Br}'(\mathbb{Q}_v) \xrightarrow{\sum_v \mathrm{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0,$$

$$0 = H^1(\mathbb{F}_q, \mathrm{Jac}(C_{\overline{\mathbb{F}_q}})) \rightarrow \mathrm{Br}'(K) \rightarrow \bigoplus_{v \in V_K} \mathrm{Br}'(K_v) \xrightarrow{\sum_v \mathrm{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0,$$

where $K = \mathbb{F}_q(C)$.

The Brauer–Azumaya group of a scheme

Let X be a scheme. The **Brauer–Azumaya group** of X is

$$\mathrm{Br}_{\mathrm{Az}}(X) := \{\text{Azumaya algebras on } X\} / \sim.$$

An **Azumaya algebra \mathcal{A} on X** is a locally free \mathcal{O}_X -algebra of finite type such that $\mathcal{A}_x \otimes_{\mathcal{O}_{X,x}} \kappa_x$ is a CSA over κ_x for all closed points $x \in X$.

Examples

- ▶ Trivial, tensor product, opposite algebra sheaves of AAs.
- ▶ ($X = \mathrm{Spec}(K)$) For a CSA A over K , the constant sheaf A .
- ▶ ($X = \mathbb{P}^n_K$) For a CSA A over K , the sheaf $A \otimes_K \mathcal{E}nd_K(\bigoplus_{n_i} \mathcal{O}_X(n_i))$.

Two AAs \mathcal{A} and \mathcal{B} are **equivalent** if there are locally free \mathcal{O}_X -modules A and B of finite rank such that $\mathcal{A} \otimes_{\mathcal{O}_X} \mathcal{E}nd_{\mathcal{O}_X}(A) \cong \mathcal{B} \otimes_{\mathcal{O}_X} \mathcal{E}nd_{\mathcal{O}_X}(B)$.

Examples

- ▶ $\mathrm{Br}_{\mathrm{Az}}(\mathrm{Spec}(K)) = \mathrm{Br}(K)$.
- ▶ (Fis17) $\mathrm{Br}_{\mathrm{Az}}(C)$ for an smooth curve of genus one C/K .

The Brauer–Grothendieck group of a scheme

Let X be a scheme. The **Brauer–Grothendieck group** of X is

$$\mathrm{Br}_{\mathrm{Gr}}(X) := H^2_{\mathrm{\acute{e}t}}(X, \mathbb{G}_m).$$

Unlike for fields, in general $\mathrm{Br}_{\mathrm{Az}}(X) \hookrightarrow \mathrm{Br}_{\mathrm{Gr}}(X)$ is not surjective.

Theorem (CTS19, Theorem 3.3.2)

Assume X is quasi-compact separated with an ample line bundle. Then

$$\mathrm{Br}(X) := \mathrm{Br}_{\mathrm{Az}}(X) \xrightarrow{\sim} \mathrm{Br}_{\mathrm{Gr}}(X)_{\mathrm{tor}}.$$

Example

A quasi-projective scheme over an affine scheme, such as $E/\mathbb{F}_q(C)$ or \mathcal{E}/\mathbb{F}_q . If X is regular integral noetherian, then $\mathrm{Br}_{\mathrm{Gr}}(X)$ is already torsion.

Theorem (CTS19, Theorem 3.5.4)

Assume X is regular integral over a field K . Then $\mathrm{Br}(X) \hookrightarrow \mathrm{Br}(K(X))$.

The Brauer–Grothendieck group of a scheme

Let X be a variety over a perfect field K , and write $\overline{X} := X \times_K \overline{K}$. The first seven terms of the Leray spectral sequence form an exact sequence

$$0 \longrightarrow H^1(K, \overline{K}[X]^\times) \longrightarrow \text{Pic}(X) \longrightarrow \text{Pic}(\overline{X})^{G_K} \longrightarrow H^2(K, \overline{K}[X]^\times) \longrightarrow$$
$$\longrightarrow \ker(\text{Br}(X) \rightarrow \text{Br}(\overline{X})) \rightarrow H^1(K, \text{Pic}(\overline{X})) \rightarrow \ker(H^3(K, \overline{K}[X]^\times) \rightarrow H_{\text{ét}}^3(X, \mathbb{G}_m)).$$

Examples

- If $X = \mathbb{A}_K^1$ or $X = \mathbb{P}_K^1$, then $\text{Br}(X) \cong \text{Br}(K)$.
- $H^2(K, \overline{K}[X]^\times) \cong \text{Br}(K)$ since $\overline{K}[X]^\times = \overline{K}^\times$.
- $\text{Br}(\overline{X}) \hookrightarrow \text{Br}(\overline{K}(X)) = 0$ by Tsen's theorem.
- $\text{Br}(K) \rightarrow \text{Br}(X)$ and $H^3(K, \overline{K}[X]^\times) \rightarrow H_{\text{ét}}^3(X, \mathbb{G}_m)$ are injective since $X(K) \neq \emptyset$ gives retractions.
- $H^1(K, \text{Pic}(\overline{X})) = 0$ since $\text{Pic}(\mathbb{A}_K^1) = 0$ and $\deg : \text{Pic}(\mathbb{P}_K^1) \xrightarrow{\sim} \mathbb{Z}$.

In fact, $\text{Br}(\mathbb{A}_K^n) \cong \text{Br}(\mathbb{P}_K^n) \cong \text{Br}(K)$ by induction.

The Brauer–Grothendieck group of a scheme

Let X be a variety over a perfect field K , and write $\overline{X} := X \times_K \overline{K}$. The first seven terms of the Leray spectral sequence form an exact sequence

$$0 \longrightarrow H^1(K, \overline{K}[X]^\times) \longrightarrow \text{Pic}(X) \longrightarrow \text{Pic}(\overline{X})^{G_K} \longrightarrow H^2(K, \overline{K}[X]^\times) \longrightarrow$$
$$\longleftarrow \ker(\text{Br}(X) \rightarrow \text{Br}(\overline{X})) \rightarrow H^1(K, \text{Pic}(\overline{X})) \rightarrow \ker(H^3(K, \overline{K}[X]^\times) \rightarrow H_{\text{ét}}^3(X, \mathbb{G}_m)).$$

Examples

- If $X = E$ is an elliptic curve, then there is a short exact sequence

$$0 \rightarrow \text{Br}(K) \rightarrow \text{Br}(E) \rightarrow H^1(K, E) \rightarrow 0.$$

As before, with $H^1(K, \text{Pic}(\overline{E})) = H^1(K, \text{Jac}(\overline{E})) = H^1(K, E)$.

- (Tho10) $\text{Br}(\mathcal{E})[\ell^\infty]$ for an elliptic K3 surface \mathcal{E}/\mathbb{F}_q given by $t(t-1)y^2 = x(x-1)(x-t)$. Uses the short exact sequence

$$0 \rightarrow \text{NS}(\mathcal{E}) \otimes_{\mathbb{Z}} \mathbb{Z}_\ell \rightarrow H_{\text{ét}}^2(\mathcal{E}, \mathbb{Z}_\ell(1)) \rightarrow T_\ell \text{Br}(\mathcal{E}) \rightarrow 0.$$

The Brauer–Manin obstruction

Let X be a scheme over a global field K . A point $x_v : \text{Spec}(K_v) \rightarrow X$ induces a map $x_v^* : \text{Br}(X) \rightarrow \text{Br}(K_v)$. The **Brauer–Manin pairing** is

$$\begin{aligned}\langle -, - \rangle_{\text{Br}} &: \text{Br}(X) \times X(\mathbb{A}_K) &\longrightarrow \mathbb{Q}/\mathbb{Z} \\ (A, (x_v)_v) &\longmapsto \sum_{v \in V_K} \text{inv}_v(x_v^*(A)) .\end{aligned}$$

The **Brauer–Manin set** for $A \in \text{Br}(X)$ is

$$X(\mathbb{A}_K)^A := \{(x_v) \in X(\mathbb{A}_K) : \langle A, (x_v)_v \rangle_{\text{Br}} = 0\}.$$

By global class field theory,

$$\overline{X(K)} \hookrightarrow \bigcap_{A \in \text{Br}(X)} X(\mathbb{A}_K)^A \subseteq X(\mathbb{A}_K).$$

If $X(\mathbb{A}_K)^A \neq \emptyset$ but $X(\mathbb{A}_K) = \emptyset$, then there is a **Brauer–Manin obstruction to the Hasse principle** for X due to $A \in \text{Br}(X)$.

The Brauer–Manin obstruction

Let X be a scheme over a global field K . A point $x_v : \text{Spec}(K_v) \rightarrow X$ induces a map $x_v^* : \text{Br}(X) \rightarrow \text{Br}(K_v)$. The **Brauer–Manin pairing** is

$$\begin{aligned}\langle -, - \rangle_{\text{Br}} &: \text{Br}(X) \times X(\mathbb{A}_K) &\longrightarrow \mathbb{Q}/\mathbb{Z} \\ (A, (x_v)_v) &\longmapsto \sum_{v \in V_K} \text{inv}_v(x_v^*(A)) .\end{aligned}$$

Theorem (Wit15)

Let \mathcal{E} be an elliptic K3 surface over \mathbb{Q} given by

$$y^2 = x(x - 3(t-1)^3(3+t))(x + 3(t+1)^3(3-t)).$$

There is a Brauer–Manin obstruction to the Hasse principle for \mathcal{E} due to

$$(x + 3(t-1)^3(3+t), 6t(t+1)) + (x - 3(t+1)^3(3-t), 6t(t-1)) \in \text{Br}(\mathcal{E}).$$

References

ASD73 Artin, Swinnerton-Dyer (1973) *The Shafarevich–Tate conjecture for pencils of elliptic curves on K3 surfaces*

CTS19 Colliot-Thélène, Skorobogatov (2019) *The Brauer–Grothendieck group*

Fis17 Fisher (2017) *On some algebras associated to genus one curves*

KT03 Kato, Trihan (2003) *On the conjectures of Birch and Swinnerton-Dyer in characteristic p*

LLR18 Liu, Lorenzini, Raynaud (2018) *Corrigendum to Néron models, Lie algebras, and reduction of curves of genus one and the Brauer group of a surface*

Mil68 Milne (1968) *The Tate–Šafarevič group of a constant abelian variety*

Mil70 Milne (1970) *The Brauer group of a rational surface*

Mil75 Milne (1975) *On a conjecture by Artin and Tate*

Tat66 Tate (1966) *On the conjectures of Birch and Swinnerton-Dyer and a geometric analog*

Tho10 Thorne (2010) *On the Tate–Shafarevich groups of certain elliptic curves*

Ulm12 Ulmer (2012) *Curves and Jacobians over function fields*

Wit15 Wittenberg (2015) *Transcendental Brauer–Manin obstruction on a pencil of elliptic curves*