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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K .

3 / 90



The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K . Let

VK := {closed points of Spec(OK )} ∪ V∞K .

4 / 90



The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K . Let

VK := {closed points of Spec(OK )} ∪ V∞K .

The Tate-Shafarevich group is

X(E/K ) := ker

(
H1(K ,E )→

∏
v∈VK

H1(Kv ,E )

)
.
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The Tate-Shafarevich group is

X(E/K ) := ker

(
H1(K ,E )→

∏
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Note that there is a bijection

H1(K ,E )
∼−→WC(E/K ),

the Weil-Châtelet group of torsors for E/K .
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)
.
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H1(K ,E )
∼−→WC(E/K ),

the Weil-Châtelet group of torsors for E/K . Thus 0 6= C ∈X(E/K ) is
a K -twist of E that is everywhere locally soluble but globally insoluble.
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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K . Let

VK := {closed points of Spec(OK )} ∪ V∞K .

The Tate-Shafarevich group is

X(E/K ) := ker

(
H1(K ,E )→

∏
v∈VK

H1(Kv ,E )

)
.

Note that there is a bijection

H1(K ,E )
∼−→WC(E/K ),

the Weil-Châtelet group of torsors for E/K . Thus 0 6= C ∈X(E/K ) is
a K -twist of E that is everywhere locally soluble but globally insoluble.

Example (Selmer)
The curve 3X 3 + 4Y 3 + 5Z 3 = 0 is a Q-twist of E : X 3 + Y 3 + 60Z 3 = 0
that is everywhere locally soluble but globally insoluble, so X(E/Q) 6= 0.
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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K . Let

VK := {closed points of Spec(OK )} ∪ V∞K .

The Tate-Shafarevich group is
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)
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Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

9 / 90



The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K . Let
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The Tate-Shafarevich group is

X(E/K ) := ker

(
H1(K ,E )→
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v∈VK

H1(Kv ,E )

)
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Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Conjecture (Birch-Swinnerton-Dyer)
Assuming TS holds,

lim
s→1

L(E/K , s)

(s − 1)rk(E/K)
=

R ·#X(E/K ) · τ
#E (K )2

tors
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The Tate-Shafarevich group of a function field

Let E be an elliptic curve over a function field K = Fq(C ). Let

VK := {closed points of Spec(OK )} ∪ V∞K .

The Tate-Shafarevich group is

X(E/K ) := ker
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∏
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)
.
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Let E be an elliptic curve over a function field K = Fq(C ). Let

VK := {closed points of C}.

The Tate-Shafarevich group is

X(E/K ) := ker

(
H1(K ,E )→

∏
v∈VK

H1(Kv ,E )

)
.

Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Theorem (KT03)
Assuming TS[`∞] holds for some `,

lim
s→1

L(E/K , s)

(s − 1)rk(E/K)
=

R ·#X(E/K ) · τ
#E (K )2

tors
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The Tate-Shafarevich group of a function field

Let E be an elliptic curve over a function field K = Fq(C ).

Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Theorem (Tat66)
TS holds if and only if TS[`∞] holds for some `.
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The Tate-Shafarevich group of a function field

Let E → C be an elliptic surface over Fq with generic fibre E/K .

Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Theorem (Tat66)
TS holds if and only if TS[`∞] holds for some `.
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The Tate-Shafarevich group of a function field

Let E → C be an elliptic surface over Fq with generic fibre E/K .

Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Theorem (Tat66)
TS holds if and only if TS[`∞] holds for some `.

Theorems
(Mil68) TS holds if E is constant.

(Mil70) TS holds if E is rational.

(ASD73) TS holds if E is K3.

16 / 90



The Tate-Shafarevich group of a function field

Let E → C be an elliptic surface over Fq with generic fibre E/K .

Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Theorem (Tat66)
TS holds if and only if TS[`∞] holds for some `.

Theorems
(Mil68) TS holds if E is constant.

(Mil70) TS holds if E is rational.

(ASD73) TS holds if E is K3.

17 / 90



The Tate-Shafarevich group of a function field

Let E → C be an elliptic surface over Fq with generic fibre E/K .

Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Theorem (Tat66)
TS holds if and only if TS[`∞] holds for some `.

Theorems
(Mil68) TS holds if E is constant.

(Mil70) TS holds if E is rational.

(ASD73) TS holds if E is K3.

18 / 90



The Tate-Shafarevich group of a function field

Let E → C be an elliptic surface over Fq with generic fibre E/K .

Conjecture (Tate-Shafarevich)
#X(E/K ) is finite.

Theorem (Tat66)
TS holds if and only if TS[`∞] holds for some `.

Theorems
(Mil68) TS holds if E is constant.

(Mil70) TS holds if E is rational.

(ASD73) TS holds if E is K3.

Theorem (Ulm12, Proposition 5.3.1)
Br(E)

∼−→X(E/K ).
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The Artin-Tate conjecture

Let E → C be an elliptic surface over Fq with generic fibre E/K .
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The Artin-Tate conjecture

Let E → C be an elliptic surface over Fq with generic fibre E/K . Then

BSD holds for E
KT03⇐⇒ #X(E/K )[`∞] is finite for some `
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The Artin-Tate conjecture
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The Artin-Tate conjecture

Let E → C be an elliptic surface over Fq with generic fibre E/K . Then

BSD holds for E
KT03⇐⇒ #X(E/K )[`∞] is finite for some `

Gro79⇐⇒ #Br(E)[`∞] is finite for some `

Mil75⇐⇒ AT (and T) holds for E .

Conjecture (Artin-Tate)
Let X be a smooth projective geometrically-connected surface over Fq.
Then #Br(X ) is finite,
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The Artin-Tate conjecture

Let E → C be an elliptic surface over Fq with generic fibre E/K . Then

BSD holds for E
KT03⇐⇒ #X(E/K )[`∞] is finite for some `

Gro79⇐⇒ #Br(E)[`∞] is finite for some `

Mil75⇐⇒ AT (and T) holds for E .

Conjecture (Artin-Tate)
Let X be a smooth projective geometrically-connected surface over Fq.
Then #Br(X ) is finite, and if NS(X )/tors = 〈Di 〉, then

lim
s→1

P2(X , q−s)

(1− q1−s)rk(NS(X ))
=

#Br(X ) · | det(〈Di ,Dj〉i,j)|
#NS(X )2

tors · qχ(X ,OX )−1+dim(PicVar(X ))
.
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The Artin-Tate conjecture

Let E → C be an elliptic surface over Fq with generic fibre E/K . Then

BSD holds for E
KT03⇐⇒ #X(E/K )[`∞] is finite for some `

Gro79⇐⇒ #Br(E)[`∞] is finite for some `

Mil75⇐⇒ AT (and T) holds for E .

Conjecture (Artin-Tate)
Let X be a smooth projective geometrically-connected surface over Fq.
Then #Br(X ) is finite, and if NS(X )/tors = 〈Di 〉, then

lim
s→1

P2(X , q−s)

(1− q1−s)rk(NS(X ))
=

#Br(X ) · | det(〈Di ,Dj〉i,j)|
#NS(X )2

tors · qχ(X ,OX )−1+dim(PicVar(X ))
.

Note that if X → C is flat proper with smooth geometrically-connected
generic fibre XK/K , then #X(Jac(XK )/K ) ∼ #Br(X ) (LLR18).
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K ) := {central simple algebras over K}/ ∼ .
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K ) := {central simple algebras over K}/ ∼ .

A central simple algebra over K is a finite-dimensional associative
K -algebra with centre K and no non-trivial proper two-sided ideals.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K ) := {central simple algebras over K}/ ∼ .

A central simple algebra over K is a finite-dimensional associative
K -algebra with centre K and no non-trivial proper two-sided ideals.

Examples

I Algebra of n × n matrices Matn(K ) over K .

I Algebra of n× n matrices Matn(D) over a central division algebra D.

I Tensor product A⊗K B of two CSAs A and B.

I Opposite algebra Aop of a CSA A.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K ) := {central simple algebras over K}/ ∼ .

A central simple algebra over K is a finite-dimensional associative
K -algebra with centre K and no non-trivial proper two-sided ideals.

Examples

I Algebra of n × n matrices Matn(K ) over K .

I Algebra of n× n matrices Matn(D) over a central division algebra D.

I Tensor product A⊗K B of two CSAs A and B.

I Opposite algebra Aop of a CSA A.

Two CSAs A and B over K are equivalent if there are n,m ∈ N such
that A⊗K Matn(K ) ∼= B ⊗K Matm(K ).
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K ) := {central simple algebras over K}/ ∼ .

A central simple algebra over K is a finite-dimensional associative
K -algebra with centre K and no non-trivial proper two-sided ideals.

Examples

I Algebra of n × n matrices Matn(K ) over K .

I Algebra of n× n matrices Matn(D) over a central division algebra D.

I Tensor product A⊗K B of two CSAs A and B.

I Opposite algebra Aop of a CSA A.

Two CSAs A and B over K are equivalent if there are n,m ∈ N such
that A⊗K Matn(K ) ∼= B ⊗K Matm(K ).

Example
If n,m ∈ N and D is a CDA, then Matn(D) ∼ Matm(D).
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K ) := {central simple algebras over K}/ ∼ .

Examples

I Br(Fq) = 0.

I Br(C) = 0.

I Br(C(X )) = 0 for a curve X/C.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K ) := {central simple algebras over K}/ ∼ .

Examples

I Br(Fq) = 0. Suffices to prove a CDA D over Fq is Fq. A finite
division algebra D is a field K . A field K with centre Fq is Fq.

I Br(C) = 0. Suffices to prove a CDA D over C is C. If x ∈ D, then
C[x ] is an integral domain and a finite-dimensional C-vector space.
Thus C[x ] is a field, but C does not have finite extensions.

I Br(C(X )) = 0 for a curve X/C. This is Tsen’s theorem.

46 / 90



The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br′(K ) := H2(K ,Gm).
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br′(K ) := H2(K ,Gm).

Theorem (CTS19, Theorem 1.3.5)
Br(K )

∼−→ Br′(K ).
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br′(K ) := H2(K ,Gm).

Theorem (CTS19, Theorem 1.3.5)
Br(K )

∼−→ Br′(K ).

Examples

I Br′(R) = 1
2Z/Z.
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Let K be a field. The cohomological Brauer group of K is

Br′(K ) := H2(K ,Gm).

Theorem (CTS19, Theorem 1.3.5)
Br(K )

∼−→ Br′(K ).

Examples

I Br′(R) = 1
2Z/Z. By cohomology of cyclic groups,

Br′(R) = H2(Gal(C/R),C×) ∼= R×/NmC/R(C×) ∼= {±}.
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br′(K ) := H2(K ,Gm).

Theorem (CTS19, Theorem 1.3.5)
Br(K )

∼−→ Br′(K ).

Examples

I Br′(R) = 1
2Z/Z. By cohomology of cyclic groups,

Br′(R) = H2(Gal(C/R),C×) ∼= R×/NmC/R(C×) ∼= {±}.

In fact, Br′(R) = {R,H}.
I Local class field theory gives isomorphisms

invp : Br′(Qp)
∼−→ Q/Z, invq : Br′(Fq((T )))

∼−→ Q/Z.
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br′(K ) := H2(K ,Gm).

Theorem (CTS19, Theorem 1.3.5)
Br(K )

∼−→ Br′(K ).

Examples

I Global class field theory gives short exact sequences

0 = lim−→
L/K

H1(L/K ,CL)→ Br′(Q)→
⊕
v∈VQ

Br′(Qv )
∑

v invv−−−−−→ Q/Z→ 0,
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br′(K ) := H2(K ,Gm).

Theorem (CTS19, Theorem 1.3.5)
Br(K )

∼−→ Br′(K ).

Examples

I Global class field theory gives short exact sequences

0 = lim−→
L/K

H1(L/K ,CL)→ Br′(Q)→
⊕
v∈VQ

Br′(Qv )
∑

v invv−−−−−→ Q/Z→ 0,

0 = H1(Fq, Jac(CFq
))→ Br′(K )→

⊕
v∈VK

Br′(Kv )
∑

v invv−−−−−→ Q/Z→ 0,

where K = Fq(C ).
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

BrAz(X ) := {Azumaya algebras on X}/ ∼ .
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

BrAz(X ) := {Azumaya algebras on X}/ ∼ .

An Azumaya algebra A on X is a locally free OX -algebra of finite type
such that Ax ⊗OX,x

κx is a CSA over κx for all closed points x ∈ X .
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

BrAz(X ) := {Azumaya algebras on X}/ ∼ .

An Azumaya algebra A on X is a locally free OX -algebra of finite type
such that Ax ⊗OX,x

κx is a CSA over κx for all closed points x ∈ X .

Examples

I Trivial, tensor product, opposite algebra sheaves of AAs.

I (X = Spec(K )) For a CSA A over K , the constant sheaf A.

I (X = Pn
K ) For a CSA A over K , the sheaf A⊗K EndK (

⊕
ni
OX (ni )).
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Let X be a scheme. The Brauer-Azumaya group of X is

BrAz(X ) := {Azumaya algebras on X}/ ∼ .

An Azumaya algebra A on X is a locally free OX -algebra of finite type
such that Ax ⊗OX,x

κx is a CSA over κx for all closed points x ∈ X .

Examples

I Trivial, tensor product, opposite algebra sheaves of AAs.

I (X = Spec(K )) For a CSA A over K , the constant sheaf A.

I (X = Pn
K ) For a CSA A over K , the sheaf A⊗K EndK (

⊕
ni
OX (ni )).

Two AAs A and B are equivalent if there are locally free OX -modules A
and B of finite rank such that A⊗OX

EndOX
(A) ∼= B ⊗OX

EndOX
(B).
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Examples
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I (X = Pn
K ) For a CSA A over K , the sheaf A⊗K EndK (
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OX (ni )).

Two AAs A and B are equivalent if there are locally free OX -modules A
and B of finite rank such that A⊗OX

EndOX
(A) ∼= B ⊗OX

EndOX
(B).

Examples

I BrAz(Spec(K )) = Br(K ).

I (Fis17) BrAz(C ) for an smooth curve of genus one C/K .
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

BrGr(X ) := H2
ét(X ,Gm).
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Unlike for fields, in general BrAz(X ) ↪→ BrGr(X ) is not surjective.
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Let X be a scheme. The Brauer-Grothendieck group of X is

BrGr(X ) := H2
ét(X ,Gm).

Unlike for fields, in general BrAz(X ) ↪→ BrGr(X ) is not surjective.

Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

Br(X ) := BrAz(X )
∼−→ BrGr(X )tors.
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Let X be a scheme. The Brauer-Grothendieck group of X is

BrGr(X ) := H2
ét(X ,Gm).

Unlike for fields, in general BrAz(X ) ↪→ BrGr(X ) is not surjective.

Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

Br(X ) := BrAz(X )
∼−→ BrGr(X )tors.

Example
A quasi-projective scheme over an affine scheme, such as E/Fq(C ) or
E/Fq.
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Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

Br(X ) := BrAz(X )
∼−→ BrGr(X )tors.

Example
A quasi-projective scheme over an affine scheme, such as E/Fq(C ) or
E/Fq. If X is regular integral noetherian, then BrGr(X ) is already torsion.
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Let X be a scheme. The Brauer-Grothendieck group of X is

BrGr(X ) := H2
ét(X ,Gm).

Unlike for fields, in general BrAz(X ) ↪→ BrGr(X ) is not surjective.

Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

Br(X ) := BrAz(X )
∼−→ BrGr(X )tors.

Example
A quasi-projective scheme over an affine scheme, such as E/Fq(C ) or
E/Fq. If X is regular integral noetherian, then BrGr(X ) is already torsion.

Theorem (CTS19, Theorem 3.5.4)
Assume X is regular integral over a field K. Then Br(X ) ↪→ Br(K (X )).
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

BrGr(X ) := H2
ét(X ,Gm).

Assume X is a variety over a perfect field K , and write X := X ×K K .
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Let X be a scheme. The Brauer-Grothendieck group of X is

BrGr(X ) := H2
ét(X ,Gm).

Assume X is a variety over a perfect field K , and write X := X ×K K .

The main tool for computation is the Leray spectral sequence

E pq
2 = Hp(K ,Hq

ét(X ,Gm)) =⇒ Hp+q
ét (X ,Gm).
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Let X be a scheme. The Brauer-Grothendieck group of X is

BrGr(X ) := H2
ét(X ,Gm).

Assume X is a variety over a perfect field K , and write X := X ×K K .

The main tool for computation is the Leray spectral sequence

E pq
2 = Hp(K ,Hq

ét(X ,Gm)) =⇒ Hp+q
ét (X ,Gm).

Theorem (CTS19, 4.8)
The first seven terms form an exact sequence

0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.
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The Brauer-Grothendieck group of a scheme
Let X be a variety over a perfect field K . There is an exact sequence

0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.
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0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.

Examples
I If X = A1

K or X = P1
K , then Br(X ) ∼= Br(K ).

I H2(K ,K [X ]×) ∼= Br(K) since K [X ]× = K
×

.
I Br(X ) ↪→ Br(K(X )) = 0 by Tsen’s theorem.
I Br(K)→ Br(X ) and H3(K ,K [X ]×)→ H3

ét(X ,Gm) are injective
since X (K) 6= ∅ gives retractions.

I H1(K ,Pic(X )) = 0 since Pic(A1
K

) = 0 and deg : Pic(P1
K

)
∼−→ Z.
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The Brauer-Grothendieck group of a scheme
Let X be a variety over a perfect field K . There is an exact sequence

0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.

Examples
I If X = A1

K or X = P1
K , then Br(X ) ∼= Br(K ).

I H2(K ,K [X ]×) ∼= Br(K) since K [X ]× = K
×

.
I Br(X ) ↪→ Br(K(X )) = 0 by Tsen’s theorem.
I Br(K)→ Br(X ) and H3(K ,K [X ]×)→ H3

ét(X ,Gm) are injective
since X (K) 6= ∅ gives retractions.

I H1(K ,Pic(X )) = 0 since Pic(A1
K

) = 0 and deg : Pic(P1
K

)
∼−→ Z.

In fact, Br(An
K ) ∼= Br(Pn

K ) ∼= Br(K ) by induction.
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The Brauer-Grothendieck group of a scheme
Let X be a variety over a perfect field K . There is an exact sequence

0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.

Examples

I If X = E is an elliptic curve, then there is a short exact sequence

0→ Br(K )→ Br(E )→ H1(K ,E )→ 0.
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The Brauer-Grothendieck group of a scheme
Let X be a variety over a perfect field K . There is an exact sequence

0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.

Examples

I If X = E is an elliptic curve, then there is a short exact sequence

0→ Br(K )→ Br(E )→ H1(K ,E )→ 0.

As before, with H1(K ,Pic(E )) = H1(K , Jac(E )) = H1(K ,E ).
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The Brauer-Grothendieck group of a scheme
Let X be a variety over a perfect field K . There is an exact sequence

0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.

Examples

I If X = E is an elliptic curve, then there is a short exact sequence

0→ Br(K )→ Br(E )→ H1(K ,E )→ 0.

As before, with H1(K ,Pic(E )) = H1(K , Jac(E )) = H1(K ,E ).

I (Tho10) Br(E)[`∞] for an elliptic K3 surface E/Fq given by
t(t − 1)y2 = x(x − 1)(x − t).
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The Brauer-Grothendieck group of a scheme
Let X be a variety over a perfect field K . There is an exact sequence

0 H1(K ,K [X ]×) Pic(X ) Pic(X )GK H2(K ,K [X ]×)

ker(Br(X )→ Br(X )) H1(K ,Pic(X )) ker(H3(K ,K [X ]×) H3
ét(X ,Gm))

.

Examples

I If X = E is an elliptic curve, then there is a short exact sequence

0→ Br(K )→ Br(E )→ H1(K ,E )→ 0.

As before, with H1(K ,Pic(E )) = H1(K , Jac(E )) = H1(K ,E ).

I (Tho10) Br(E)[`∞] for an elliptic K3 surface E/Fq given by
t(t − 1)y2 = x(x − 1)(x − t). Uses the short exact sequence

0→ NS(E)⊗Z Z` → H2
ét(E ,Z`(1))→ T`Br(E)→ 0,

obtained by applying `-adic cohomology to the Kummer sequence.
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The Brauer-Manin obstruction

Let X be a scheme over a global field K .
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The Brauer-Manin obstruction

Let X be a scheme over a global field K . A point xv : Spec(Kv )→ X
induces a map x∗v : Br(X )→ Br(Kv ).
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The Brauer-Manin obstruction

Let X be a scheme over a global field K . A point xv : Spec(Kv )→ X
induces a map x∗v : Br(X )→ Br(Kv ). The Brauer-Manin pairing is

〈−,−〉Br : Br(X )× X (AK ) −→ Q/Z
(A, (xv )v ) 7−→

∑
v∈VK

invv (x∗v (A)) .
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Let X be a scheme over a global field K . A point xv : Spec(Kv )→ X
induces a map x∗v : Br(X )→ Br(Kv ). The Brauer-Manin pairing is

〈−,−〉Br : Br(X )× X (AK ) −→ Q/Z
(A, (xv )v ) 7−→

∑
v∈VK

invv (x∗v (A)) .

The Brauer-Manin set for A ∈ Br(X ) is

X (AK )A := {(xv ) ∈ X (AK ) : 〈A, (xv )v 〉Br = 0}.
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The Brauer-Manin obstruction

Let X be a scheme over a global field K . A point xv : Spec(Kv )→ X
induces a map x∗v : Br(X )→ Br(Kv ). The Brauer-Manin pairing is

〈−,−〉Br : Br(X )× X (AK ) −→ Q/Z
(A, (xv )v ) 7−→

∑
v∈VK

invv (x∗v (A)) .

The Brauer-Manin set for A ∈ Br(X ) is

X (AK )A := {(xv ) ∈ X (AK ) : 〈A, (xv )v 〉Br = 0}.

By global class field theory,

X (K ) ↪→
⋂

A∈Br(X )

X (AK )A ⊆ X (AK ).
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The Brauer-Manin obstruction

Let X be a scheme over a global field K . A point xv : Spec(Kv )→ X
induces a map x∗v : Br(X )→ Br(Kv ). The Brauer-Manin pairing is

〈−,−〉Br : Br(X )× X (AK ) −→ Q/Z
(A, (xv )v ) 7−→

∑
v∈VK

invv (x∗v (A)) .

The Brauer-Manin set for A ∈ Br(X ) is

X (AK )A := {(xv ) ∈ X (AK ) : 〈A, (xv )v 〉Br = 0}.

By global class field theory,

X (K ) ↪→
⋂

A∈Br(X )

X (AK )A ⊆ X (AK ).

If X (AK )A 6= ∅ but X (AK ) = ∅, then there is a Brauer-Manin
obstruction to the Hasse principle for X due to A ∈ Br(X ).
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The Brauer-Manin obstruction

Let X be a scheme over a global field K . A point xv : Spec(Kv )→ X
induces a map x∗v : Br(X )→ Br(Kv ). The Brauer-Manin pairing is

〈−,−〉Br : Br(X )× X (AK ) −→ Q/Z
(A, (xv )v ) 7−→

∑
v∈VK

invv (x∗v (A)) .

Theorem (Wit15)
Let E be an elliptic K3 surface over Q given by

y2 = x(x − 3(t − 1)3(3 + t))(x + 3(t + 1)3(3− t)).

There is a Brauer-Manin obstruction to the Hasse principle for E due to

(x + 3(t−1)3(3 + t), 6t(t + 1)) + (x−3(t + 1)3(3− t), 6t(t−1)) ∈ Br(E).
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