The Tate-Shafarevich and Brauer groups

David Ang

Tuesday, 05 July 2022

Overview

Part I

- The Tate-Shafarevich group of a $\left\{\begin{array}{l}\text { number field } \\ \text { function field }\end{array}\right.$
- The Artin-Tate conjecture

Part II

- The Brauer- $\left\{\begin{array}{l}\text { Grothendieck } \\ \text { Azumaya }\end{array}\right.$ group of a $\left\{\begin{array}{l}\text { field } \\ \text { scheme }\end{array}\right.$
- The Brauer-Manin obstruction

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K.

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Note that there is a bijection

$$
H^{1}(K, E) \xrightarrow{\sim} \mathrm{WC}(E / K),
$$

the Weil-Châtelet group of torsors for E / K.

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Note that there is a bijection

$$
H^{1}(K, E) \xrightarrow{\sim} \mathrm{WC}(E / K),
$$

the Weil-Châtelet group of torsors for E / K. Thus $0 \neq C \in \amalg(E / K)$ is a K-twist of E that is everywhere locally soluble but globally insoluble.

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Note that there is a bijection

$$
H^{1}(K, E) \xrightarrow{\sim} \mathrm{WC}(E / K),
$$

the Weil-Châtelet group of torsors for E / K. Thus $0 \neq C \in \amalg(E / K)$ is a K-twist of E that is everywhere locally soluble but globally insoluble.
Example (Selmer)
The curve $3 X^{3}+4 Y^{3}+5 Z^{3}=0$ is a \mathbb{Q}-twist of $E: X^{3}+Y^{3}+60 Z^{3}=0$ that is everywhere locally soluble but globally insoluble, so $\amalg(E / \mathbb{Q}) \neq 0$.

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.

The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Conjecture (Birch-Swinnerton-Dyer)
Assuming TS holds,

$$
\lim _{s \rightarrow 1} \frac{L(E / K, s)}{(s-1)^{\operatorname{rk}(E / K)}}=\frac{R \cdot \# Ш(E / K) \cdot \tau}{\# E(K)_{\text {tors }}^{2}} .
$$

The Tate-Shafarevich group of a function field

Let E be an elliptic curve over a function field $K=\mathbb{F}_{q}(C)$. Let

$$
V_{K}:=\left\{\text { closed points of } \operatorname{Spec}\left(\mathcal{O}_{K}\right)\right\} \cup V_{K}^{\infty} \text {. }
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Conjecture (Birch-Swinnerton-Dyer)
Assuming TS holds,

$$
\lim _{s \rightarrow 1} \frac{L(E / K, s)}{(s-1)^{\operatorname{rk}(E / K)}}=\frac{R \cdot \# Ш(E / K) \cdot \tau}{\# E(K)_{\text {tors }}^{2}} .
$$

The Tate-Shafarevich group of a function field

Let E be an elliptic curve over a function field $K=\mathbb{F}_{q}(C)$. Let

$$
V_{K}:=\{\text { closed points of } C\} .
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Conjecture (Birch-Swinnerton-Dyer)
Assuming TS holds,

$$
\lim _{s \rightarrow 1} \frac{L(E / K, s)}{(s-1)^{\operatorname{rk}(E / K)}}=\frac{R \cdot \# Ш(E / K) \cdot \tau}{\# E(K)_{\text {tors }}^{2}} .
$$

The Tate-Shafarevich group of a function field

Let E be an elliptic curve over a function field $K=\mathbb{F}_{q}(C)$. Let

$$
V_{K}:=\{\text { closed points of } C\} .
$$

The Tate-Shafarevich group is

$$
\amalg(E / K):=\operatorname{ker}\left(H^{1}(K, E) \rightarrow \prod_{v \in V_{K}} H^{1}\left(K_{v}, E\right)\right) .
$$

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Theorem (KT03)
Assuming $T S\left[\ell^{\infty}\right]$ holds for some ℓ,

$$
\lim _{s \rightarrow 1} \frac{L(E / K, s)}{(s-1)^{\operatorname{rk}(E / K)}}=\frac{R \cdot \# Ш(E / K) \cdot \tau}{\# E(K)_{\text {tors }}^{2}} .
$$

The Tate-Shafarevich group of a function field

Let E be an elliptic curve over a function field $K=\mathbb{F}_{q}(C)$.

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Theorem (Tat66)
$T S$ holds if and only if $T S\left[\ell^{\infty}\right]$ holds for some ℓ.

The Tate-Shafarevich group of a function field

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K.

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Theorem (Tat66)
TS holds if and only if $T S\left[\ell^{\infty}\right]$ holds for some ℓ.

The Tate-Shafarevich group of a function field

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K.

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Theorem (Tat66)
$T S$ holds if and only if $T S\left[\ell^{\infty}\right]$ holds for some ℓ.
Theorems
(Mil68) TS holds if \mathcal{E} is constant.

The Tate-Shafarevich group of a function field

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K.

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Theorem (Tat66)
$T S$ holds if and only if $T S\left[\ell^{\infty}\right]$ holds for some ℓ.
Theorems
(Mil68) TS holds if \mathcal{E} is constant.
(Mil70) TS holds if \mathcal{E} is rational.

The Tate-Shafarevich group of a function field

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K.

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Theorem (Tat66)
$T S$ holds if and only if $T S\left[\ell^{\infty}\right]$ holds for some ℓ.
Theorems
(Mil68) TS holds if \mathcal{E} is constant.
(Mil70) $T S$ holds if \mathcal{E} is rational.
(ASD73) TS holds if \mathcal{E} is $K 3$.

The Tate-Shafarevich group of a function field

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K.

Conjecture (Tate-Shafarevich)
$\# Ш(E / K)$ is finite.
Theorem (Tat66)
$T S$ holds if and only if $T S\left[\ell^{\infty}\right]$ holds for some ℓ.
Theorems
(Mil68) TS holds if \mathcal{E} is constant.
(Mil70) $T S$ holds if \mathcal{E} is rational.
(ASD73) TS holds if \mathcal{E} is $K 3$.

Theorem (Ulm12, Proposition 5.3.1) $\operatorname{Br}(\mathcal{E}) \xrightarrow{\sim} \amalg(E / K)$.

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K.

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K. Then BSD holds for $E \quad \stackrel{\mathrm{KT03}}{\Longleftrightarrow} \# Ш(E / K)\left[\ell^{\infty}\right]$ is finite for some ℓ

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K. Then $\begin{aligned} \text { BSD holds for } E & \stackrel{\text { KT03 }}{\Longleftrightarrow} \\ & \# Ш(E / K)\left[\ell^{\infty}\right] \text { is finite for some } \ell \\ & \# B r(\mathcal{E})\left[\ell^{\infty}\right] \text { is finite for some } \ell\end{aligned}$

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K. Then

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K. Then

BSD holds for E	$\stackrel{\mathrm{KT03}}{\Longleftrightarrow}$	$\# Ш(E / K)\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Gro79 }}{\rightleftharpoons}$	$\# \operatorname{Br}(\mathcal{E})\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Mil75 }}{\rightleftharpoons}$	AT (and T) holds for \mathcal{E}.

Conjecture (Artin-Tate)
Let X be a smooth projective geometrically-connected surface over \mathbb{F}_{q}.

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K. Then

BSD holds for E	$\stackrel{\mathrm{KT03}}{\Longleftrightarrow}$	$\# Ш(E / K)\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Gro79 }}{\rightleftharpoons}$	$\# \operatorname{Br}(\mathcal{E})\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Mil75 }}{\rightleftharpoons}$	AT (and T) holds for \mathcal{E}.

Conjecture (Artin-Tate)
Let X be a smooth projective geometrically-connected surface over \mathbb{F}_{q}. Then $\# \operatorname{Br}(X)$ is finite,

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K. Then

BSD holds for E	$\stackrel{\text { KT03 }}{\Longleftrightarrow}$	$\# Ш(E / K)\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Gro79 }}{\rightleftharpoons}$	$\# \operatorname{Br}(\mathcal{E})\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Mil75 }}{\rightleftharpoons}$	AT (and T) holds for \mathcal{E}.

Conjecture (Artin-Tate)

Let X be a smooth projective geometrically-connected surface over \mathbb{F}_{q}. Then $\# \operatorname{Br}(X)$ is finite, and if $\operatorname{NS}(X)_{/ \text {tors }}=\left\langle D_{i}\right\rangle$, then

$$
\lim _{s \rightarrow 1} \frac{P_{2}\left(X, q^{-s}\right)}{\left(1-q^{1-s}\right)^{\operatorname{rk}(\operatorname{NS}(X))}}=\frac{\# \operatorname{Br}(X) \cdot\left|\operatorname{det}\left(\left\langle D_{i}, D_{j}\right\rangle_{i, j}\right)\right|}{\# \operatorname{NS}(X)_{\text {tors }}^{2} \cdot q^{\chi\left(X, \mathcal{O}_{X}\right)-1+\operatorname{dim}(\operatorname{PicVar}(X))}}
$$

The Artin-Tate conjecture

Let $\mathcal{E} \rightarrow C$ be an elliptic surface over \mathbb{F}_{q} with generic fibre E / K. Then

BSD holds for E	$\stackrel{\mathrm{KT03}}{\rightleftharpoons}$	$\# Ш(E / K)\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Gro79 }}{\rightleftharpoons}$	$\# \operatorname{Br}(\mathcal{E})\left[\ell^{\infty}\right]$ is finite for some ℓ
	$\stackrel{\text { Mil15 }}{\rightleftharpoons}$	AT (and T) holds for \mathcal{E}.

Conjecture (Artin-Tate)

Let X be a smooth projective geometrically-connected surface over \mathbb{F}_{q}. Then $\# \operatorname{Br}(X)$ is finite, and if $\operatorname{NS}(X)_{/ \text {tors }}=\left\langle D_{i}\right\rangle$, then

$$
\lim _{s \rightarrow 1} \frac{P_{2}\left(X, q^{-s}\right)}{\left(1-q^{1-s}\right)^{\operatorname{rk}(\operatorname{NS}(X))}}=\frac{\# \operatorname{Br}(X) \cdot\left|\operatorname{det}\left(\left\langle D_{i}, D_{j}\right\rangle_{i, j}\right)\right|}{\# \operatorname{NS}(X)_{\text {tors }}^{2} \cdot q^{\chi\left(X, \mathcal{O}_{X}\right)-1+\operatorname{dim}(\operatorname{PicVar}(X))}}
$$

Note that if $X \rightarrow C$ is flat proper with smooth geometrically-connected generic fibre X_{K} / K, then $\# Ш\left(\operatorname{Jac}\left(X_{K}\right) / K\right) \sim \# \operatorname{Br}(X)(L L R 18)$.

Overview

Part I

- The Tate-Shafarevich group of a $\left\{\begin{array}{l}\text { number field } \\ \text { function field }\end{array}\right.$
- The Artin-Tate conjecture

Part II

- The Brauer- $\left\{\begin{array}{l}\text { Grothendieck } \\ \text { Azumaya }\end{array}\right.$ group of a $\left\{\begin{array}{l}\text { field } \\ \text { scheme }\end{array}\right.$
- The Brauer-Manin obstruction

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim \text {. }
$$

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

A central simple algebra over K is a finite-dimensional associative K-algebra with centre K and no non-trivial proper two-sided ideals.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

A central simple algebra over K is a finite-dimensional associative K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(K)$ over K.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

A central simple algebra over K is a finite-dimensional associative K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(K)$ over K.
- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(D)$ over a central division algebra D.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

A central simple algebra over K is a finite-dimensional associative K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(K)$ over K.
- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(D)$ over a central division algebra D.
- Tensor product $A \otimes_{K} B$ of two CSAs A and B.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

A central simple algebra over K is a finite-dimensional associative K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(K)$ over K.
- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(D)$ over a central division algebra D.
- Tensor product $A \otimes_{K} B$ of two CSAs A and B.
- Opposite algebra $A^{\text {op }}$ of a CSA A.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

A central simple algebra over K is a finite-dimensional associative K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(K)$ over K.
- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(D)$ over a central division algebra D.
- Tensor product $A \otimes_{K} B$ of two CSAs A and B.
- Opposite algebra $A^{\text {op }}$ of a CSA A.

Two CSAs A and B over K are equivalent if there are $n, m \in \mathbb{N}$ such that $A \otimes_{K} \operatorname{Mat}_{n}(K) \cong B \otimes_{K} \operatorname{Mat}_{m}(K)$.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

A central simple algebra over K is a finite-dimensional associative K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(K)$ over K.
- Algebra of $n \times n$ matrices $\operatorname{Mat}_{n}(D)$ over a central division algebra D.
- Tensor product $A \otimes_{K} B$ of two CSAs A and B.
- Opposite algebra $A^{\text {op }}$ of a CSA A.

Two CSAs A and B over K are equivalent if there are $n, m \in \mathbb{N}$ such that $A \otimes_{K} \operatorname{Mat}_{n}(K) \cong B \otimes_{K} \operatorname{Mat}_{m}(K)$.

Example

If $n, m \in \mathbb{N}$ and D is a CDA, then $\operatorname{Mat}_{n}(D) \sim \operatorname{Mat}_{m}(D)$.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim \text {. }
$$

Examples

- $\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples
$-\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim \text {. }
$$

Examples
$-\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples
$-\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K. A field K with centre \mathbb{F}_{q} is \mathbb{F}_{q}.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples

- $\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K. A field K with centre \mathbb{F}_{q} is \mathbb{F}_{q}.
- $\operatorname{Br}(\mathbb{C})=0$.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples
$-\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K. A field K with centre \mathbb{F}_{q} is \mathbb{F}_{q}.

- $\operatorname{Br}(\mathbb{C})=0$. Suffices to prove a CDA D over \mathbb{C} is \mathbb{C}.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples

- $\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K. A field K with centre \mathbb{F}_{q} is \mathbb{F}_{q}.
- $\operatorname{Br}(\mathbb{C})=0$. Suffices to prove a CDA D over \mathbb{C} is \mathbb{C}. If $x \in D$, then $\mathbb{C}[x]$ is an integral domain and a finite-dimensional \mathbb{C}-vector space.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples

- $\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K. A field K with centre \mathbb{F}_{q} is \mathbb{F}_{q}.
- $\operatorname{Br}(\mathbb{C})=0$. Suffices to prove a CDA D over \mathbb{C} is \mathbb{C}. If $x \in D$, then $\mathbb{C}[x]$ is an integral domain and a finite-dimensional \mathbb{C}-vector space. Thus $\mathbb{C}[x]$ is a field, but \mathbb{C} does not have finite extensions.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples

- $\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K. A field K with centre \mathbb{F}_{q} is \mathbb{F}_{q}.
- $\operatorname{Br}(\mathbb{C})=0$. Suffices to prove a CDA D over \mathbb{C} is \mathbb{C}. If $x \in D$, then $\mathbb{C}[x]$ is an integral domain and a finite-dimensional \mathbb{C}-vector space. Thus $\mathbb{C}[x]$ is a field, but \mathbb{C} does not have finite extensions.
- $\operatorname{Br}(\mathbb{C}(X))=0$ for a curve X / \mathbb{C}.

The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

$$
\operatorname{Br}(K):=\{\text { central simple algebras over } K\} / \sim .
$$

Examples

- $\operatorname{Br}\left(\mathbb{F}_{q}\right)=0$. Suffices to prove a CDA D over \mathbb{F}_{q} is \mathbb{F}_{q}. A finite division algebra D is a field K. A field K with centre \mathbb{F}_{q} is \mathbb{F}_{q}.
- $\operatorname{Br}(\mathbb{C})=0$. Suffices to prove a CDA D over \mathbb{C} is \mathbb{C}. If $x \in D$, then $\mathbb{C}[x]$ is an integral domain and a finite-dimensional \mathbb{C}-vector space. Thus $\mathbb{C}[x]$ is a field, but \mathbb{C} does not have finite extensions.
- $\operatorname{Br}(\mathbb{C}(X))=0$ for a curve X / \mathbb{C}. This is Tsen's theorem.

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, Theorem 1.3.5)
$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}^{\prime}(K)$.

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, Theorem 1.3.5)
$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}^{\prime}(K)$.
Examples

- $\operatorname{Br}^{\prime}(\mathbb{R})=\frac{1}{2} \mathbb{Z} / \mathbb{Z}$.

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, Theorem 1.3.5)
$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}^{\prime}(K)$.

Examples

- $\operatorname{Br}^{\prime}(\mathbb{R})=\frac{1}{2} \mathbb{Z} / \mathbb{Z}$. By cohomology of cyclic groups,

$$
\operatorname{Br}^{\prime}(\mathbb{R})=H^{2}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \mathbb{C}^{\times}\right) \cong \mathbb{R}^{\times} / \operatorname{Nm}_{\mathbb{C} / \mathbb{R}}\left(\mathbb{C}^{\times}\right) \cong\{ \pm\}
$$

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, Theorem 1.3.5)
$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}^{\prime}(K)$.

Examples

- $\operatorname{Br}^{\prime}(\mathbb{R})=\frac{1}{2} \mathbb{Z} / \mathbb{Z}$. By cohomology of cyclic groups,

$$
\operatorname{Br}^{\prime}(\mathbb{R})=H^{2}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \mathbb{C}^{\times}\right) \cong \mathbb{R}^{\times} / \operatorname{Nm}_{\mathbb{C} / \mathbb{R}}\left(\mathbb{C}^{\times}\right) \cong\{ \pm\}
$$

In fact, $\operatorname{Br}^{\prime}(\mathbb{R})=\{\mathbb{R}, \mathbb{H}\}$.

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, Theorem 1.3.5)
$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}^{\prime}(K)$.

Examples

- $\operatorname{Br}^{\prime}(\mathbb{R})=\frac{1}{2} \mathbb{Z} / \mathbb{Z}$. By cohomology of cyclic groups,

$$
\operatorname{Br}^{\prime}(\mathbb{R})=H^{2}\left(\operatorname{Gal}(\mathbb{C} / \mathbb{R}), \mathbb{C}^{\times}\right) \cong \mathbb{R}^{\times} / \operatorname{Nm}_{\mathbb{C}} / \mathbb{R}\left(\mathbb{C}^{\times}\right) \cong\{ \pm\}
$$

In fact, $\operatorname{Br}^{\prime}(\mathbb{R})=\{\mathbb{R}, \mathbb{H}\}$.

- Local class field theory gives isomorphisms

$$
\operatorname{inv}_{p}: \operatorname{Br}^{\prime}\left(\mathbb{Q}_{p}\right) \xrightarrow{\sim} \mathbb{Q} / \mathbb{Z}, \quad \operatorname{inv}_{q}: \operatorname{Br}^{\prime}\left(\mathbb{F}_{q}((T))\right) \xrightarrow{\sim} \mathbb{Q} / \mathbb{Z} .
$$

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, Theorem 1.3.5)
$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}^{\prime}(K)$.

Examples

- Global class field theory gives short exact sequences

$$
0=\underset{L / K}{\lim _{l \mid} H^{1}\left(L / K, C_{L}\right) \rightarrow \operatorname{Br}^{\prime}(\mathbb{Q}) \rightarrow \bigoplus_{v \in V_{\mathbb{Q}}} \operatorname{Br}^{\prime}\left(\mathbb{Q}_{V}\right) \xrightarrow{\sum_{v} \text { inv }_{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0, ~ ; ~, ~}
$$

The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

$$
\operatorname{Br}^{\prime}(K):=H^{2}\left(K, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, Theorem 1.3.5)
$\mathrm{Br}(K) \xrightarrow{\sim} \mathrm{Br}^{\prime}(K)$.

Examples

- Global class field theory gives short exact sequences

$$
\begin{aligned}
& 0=\underset{L / K}{\lim _{L / K}} H^{1}\left(L / K, C_{L}\right) \rightarrow \operatorname{Br}^{\prime}(\mathbb{Q}) \rightarrow \bigoplus_{v \in V_{\mathbb{Q}}} \operatorname{Br}^{\prime}\left(\mathbb{Q}_{v}\right) \xrightarrow{\sum_{v} \mathrm{inv}_{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0, \\
& 0=H^{1}\left(\mathbb{F}_{q}, \operatorname{Jac}\left(C_{\mathbb{F}_{q}}\right)\right) \rightarrow \operatorname{Br}^{\prime}(K) \rightarrow \bigoplus_{v \in V_{K}} \operatorname{Br}^{\prime}\left(K_{v}\right) \xrightarrow{\sum_{v} \text { inv }_{v}} \mathbb{Q} / \mathbb{Z} \rightarrow 0,
\end{aligned}
$$

where $K=\mathbb{F}_{q}(C)$.

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

An Azumaya algebra \mathcal{A} on X is a locally free \mathcal{O}_{x}-algebra of finite type such that $\mathcal{A}_{x} \otimes_{\mathcal{O}_{x, x}} \kappa_{x}$ is a CSA over κ_{x} for all closed points $x \in X$.

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

An Azumaya algebra \mathcal{A} on X is a locally free \mathcal{O}_{x}-algebra of finite type such that $\mathcal{A}_{x} \otimes_{\mathcal{O}_{x, x}} \kappa_{x}$ is a CSA over κ_{x} for all closed points $x \in X$.
Examples

- Trivial, tensor product, opposite algebra sheaves of AAs.

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

An Azumaya algebra \mathcal{A} on X is a locally free \mathcal{O}_{x}-algebra of finite type such that $\mathcal{A}_{x} \otimes_{\mathcal{O}_{x, x}} \kappa_{x}$ is a CSA over κ_{x} for all closed points $x \in X$.
Examples

- Trivial, tensor product, opposite algebra sheaves of AAs.
- $(X=\operatorname{Spec}(K))$ For a CSA A over K, the constant sheaf A.

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

An Azumaya algebra \mathcal{A} on X is a locally free \mathcal{O}_{x}-algebra of finite type such that $\mathcal{A}_{x} \otimes_{\mathcal{O}_{x, x}} \kappa_{x}$ is a CSA over κ_{x} for all closed points $x \in X$.
Examples

- Trivial, tensor product, opposite algebra sheaves of AAs.
- $(X=\operatorname{Spec}(K))$ For a CSA A over K, the constant sheaf A.
- $\left(X=\mathbb{P}_{K}^{n}\right)$ For a CSA A over K, the sheaf $A \otimes_{K} \mathcal{E} n d_{K}\left(\bigoplus_{n_{i}} \mathcal{O}_{X}\left(n_{i}\right)\right)$.

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

An Azumaya algebra \mathcal{A} on X is a locally free \mathcal{O}_{x}-algebra of finite type such that $\mathcal{A}_{x} \otimes_{\mathcal{O}_{x, x}} \kappa_{x}$ is a CSA over κ_{x} for all closed points $x \in X$.

Examples

- Trivial, tensor product, opposite algebra sheaves of AAs.
- $(X=\operatorname{Spec}(K))$ For a CSA A over K, the constant sheaf A.
- $\left(X=\mathbb{P}_{K}^{n}\right)$ For a CSA A over K, the sheaf $A \otimes_{K} \mathcal{E} n d_{K}\left(\bigoplus_{n_{i}} \mathcal{O}_{X}\left(n_{i}\right)\right)$.

Two AAs \mathcal{A} and \mathcal{B} are equivalent if there are locally free \mathcal{O}_{x}-modules A and B of finite rank such that $\mathcal{A} \otimes_{\mathcal{O}_{x}} \mathcal{E} n d_{\mathcal{O}_{x}}(A) \cong \mathcal{B} \otimes_{\mathcal{O}_{x}} \mathcal{E} n d_{\mathcal{O}_{x}}(B)$.

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

An Azumaya algebra \mathcal{A} on X is a locally free \mathcal{O}_{x}-algebra of finite type such that $\mathcal{A}_{x} \otimes_{\mathcal{O}_{x, x}} \kappa_{x}$ is a CSA over κ_{x} for all closed points $x \in X$.

Examples

- Trivial, tensor product, opposite algebra sheaves of AAs.
- $(X=\operatorname{Spec}(K))$ For a CSA A over K, the constant sheaf A.
- $\left(X=\mathbb{P}_{K}^{n}\right)$ For a CSA A over K, the sheaf $A \otimes_{K} \mathcal{E} n d_{K}\left(\bigoplus_{n_{i}} \mathcal{O}_{X}\left(n_{i}\right)\right)$.

Two AAs \mathcal{A} and \mathcal{B} are equivalent if there are locally free \mathcal{O}_{x}-modules A and B of finite rank such that $\mathcal{A} \otimes_{\mathcal{O}_{x}} \mathcal{E} n d_{\mathcal{O}_{x}}(A) \cong \mathcal{B} \otimes_{\mathcal{O}_{x}} \mathcal{E} n d_{\mathcal{O}_{x}}(B)$. Examples

- $\operatorname{Br}_{\mathrm{Az}}(\operatorname{Spec}(K))=\operatorname{Br}(K)$.

The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

$$
\operatorname{Br}_{\mathrm{Az}}(X):=\{\text { Azumaya algebras on } X\} / \sim .
$$

An Azumaya algebra \mathcal{A} on X is a locally free \mathcal{O}_{x}-algebra of finite type such that $\mathcal{A}_{x} \otimes_{\mathcal{O}_{x, x}} \kappa_{x}$ is a CSA over κ_{x} for all closed points $x \in X$.

Examples

- Trivial, tensor product, opposite algebra sheaves of AAs.
- $(X=\operatorname{Spec}(K))$ For a CSA A over K, the constant sheaf A.
- $\left(X=\mathbb{P}_{K}^{n}\right)$ For a CSA A over K, the sheaf $A \otimes_{K} \mathcal{E} n d_{K}\left(\bigoplus_{n_{i}} \mathcal{O}_{X}\left(n_{i}\right)\right)$.

Two AAs \mathcal{A} and \mathcal{B} are equivalent if there are locally free \mathcal{O}_{x}-modules A and B of finite rank such that $\mathcal{A} \otimes_{\mathcal{O}_{x}} \mathcal{E} n d_{\mathcal{O}_{x}}(A) \cong \mathcal{B} \otimes_{\mathcal{O}_{x}} \mathcal{E} n d_{\mathcal{O}_{x}}(B)$.
Examples

- $\operatorname{Br}_{\mathrm{Az}}(\operatorname{Spec}(K))=\operatorname{Br}(K)$.
- (Fis17) $\mathrm{Br}_{\mathrm{Az}}(C)$ for an smooth curve of genus one C / K.

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{e \mathrm{et}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Unlike for fields, in general $\mathrm{Br}_{\mathrm{Az}}(X) \hookrightarrow \operatorname{Br}_{\mathrm{Gr}}(X)$ is not surjective.

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Unlike for fields, in general $\mathrm{Br}_{\mathrm{Az}}(X) \hookrightarrow \operatorname{Br}_{\mathrm{Gr}}(X)$ is not surjective.

Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

$$
\mathrm{Br}(X):=\operatorname{Br}_{\mathrm{Az}}(X) \xrightarrow{\sim} \operatorname{Br}_{\mathrm{Gr}}(X)_{\text {tors }} .
$$

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Unlike for fields, in general $\mathrm{Br}_{\mathrm{Az}}(X) \hookrightarrow \operatorname{Br}_{\mathrm{Gr}}(X)$ is not surjective.

Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

$$
\mathrm{Br}(X):=\operatorname{Br}_{\mathrm{Az}}(X) \xrightarrow{\sim} \operatorname{Br}_{\mathrm{Gr}}(X)_{\text {tors }} .
$$

Example
A quasi-projective scheme over an affine scheme, such as $E / \mathbb{F}_{q}(C)$ or $\mathcal{E} / \mathbb{F}_{q}$.

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Unlike for fields, in general $\mathrm{Br}_{\mathrm{Az}}(X) \hookrightarrow \operatorname{Br}_{\mathrm{Gr}}(X)$ is not surjective.

Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

$$
\operatorname{Br}(X):=\operatorname{Br}_{\mathrm{Az}}(X) \xrightarrow{\sim} \operatorname{Br} \mathrm{Gr}(X)_{\text {tors }} .
$$

Example
A quasi-projective scheme over an affine scheme, such as $E / \mathbb{F}_{q}(C)$ or $\mathcal{E} / \mathbb{F}_{q}$. If X is regular integral noetherian, then $\operatorname{Br}_{\mathrm{Gr}}(X)$ is already torsion.

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\hat{e t}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Unlike for fields, in general $\mathrm{Br}_{\mathrm{Az}}(X) \hookrightarrow \operatorname{Br}_{\mathrm{Gr}}(X)$ is not surjective.

Theorem (CTS19, Theorem 3.3.2)
Assume X is quasi-compact separated with an ample line bundle. Then

$$
\operatorname{Br}(X):=\operatorname{Br}_{\mathrm{Az}}(X) \xrightarrow{\sim} \operatorname{Br} \mathrm{Gr}(X)_{\text {tors }} .
$$

Example
A quasi-projective scheme over an affine scheme, such as $E / \mathbb{F}_{q}(C)$ or $\mathcal{E} / \mathbb{F}_{q}$. If X is regular integral noetherian, then $\operatorname{Br}_{\mathrm{Gr}}(X)$ is already torsion.

Theorem (CTS19, Theorem 3.5.4)
Assume X is regular integral over a field K. Then $\operatorname{Br}(X) \hookrightarrow \operatorname{Br}(K(X))$.

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\hat{e t t}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Assume X is a variety over a perfect field K, and write $\bar{X}:=X \times_{K} \bar{K}$.

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Assume X is a variety over a perfect field K, and write $\bar{X}:=X \times_{K} \bar{K}$.

The main tool for computation is the Leray spectral sequence

$$
E_{2}^{p q}=H^{p}\left(K, H_{\mathrm{et}}^{q}\left(\bar{X}, \mathbb{G}_{\mathrm{m}}\right)\right) \Longrightarrow H_{\mathrm{et}}^{p+q}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

$$
\operatorname{Br}_{\mathrm{Gr}}(X):=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Assume X is a variety over a perfect field K, and write $\bar{X}:=X \times_{K} \bar{K}$.

The main tool for computation is the Leray spectral sequence

$$
E_{2}^{p q}=H^{p}\left(K, H_{\mathrm{et}}^{q}\left(\bar{X}, \mathbb{G}_{\mathrm{m}}\right)\right) \Longrightarrow H_{\mathrm{et}}^{p+q}\left(X, \mathbb{G}_{\mathrm{m}}\right) .
$$

Theorem (CTS19, 4.8)
The first seven terms form an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow
$$

$$
\Longrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{e t}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=\mathbb{A}_{K}^{1}$ or $X=\mathbb{P}_{K}^{1}$, then $\operatorname{Br}(X) \cong \operatorname{Br}(K)$.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=\mathbb{A}_{K}^{1}$ or $X=\mathbb{P}_{K}^{1}$, then $\operatorname{Br}(X) \cong \operatorname{Br}(K)$.
- $H^{2}\left(K, \bar{K}[X]^{\times}\right) \cong \operatorname{Br}(K)$ since $\bar{K}[X]^{\times}=\bar{K}^{\times}$.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=\mathbb{A}_{K}^{1}$ or $X=\mathbb{P}_{K}^{1}$, then $\operatorname{Br}(X) \cong \operatorname{Br}(K)$.
- $H^{2}\left(K, \bar{K}[X]^{\times}\right) \cong \operatorname{Br}(K)$ since $\bar{K}[X]^{\times}=\bar{K}^{\times}$.
- $\operatorname{Br}(\bar{X}) \hookrightarrow \operatorname{Br}(\bar{K}(X))=0$ by Tsen's theorem.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G} K \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=\mathbb{A}_{K}^{1}$ or $X=\mathbb{P}_{K}^{1}$, then $\operatorname{Br}(X) \cong \operatorname{Br}(K)$.
- $H^{2}\left(K, \bar{K}[X]^{\times}\right) \cong \operatorname{Br}(K)$ since $\bar{K}[X]^{\times}=\bar{K}^{\times}$.
- $\operatorname{Br}(\bar{X}) \hookrightarrow \operatorname{Br}(\bar{K}(X))=0$ by Tsen's theorem.
- $\operatorname{Br}(K) \rightarrow \operatorname{Br}(X)$ and $H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\text {et }}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)$ are injective since $X(K) \neq \emptyset$ gives retractions.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=\mathbb{A}_{K}^{1}$ or $X=\mathbb{P}_{K}^{1}$, then $\operatorname{Br}(X) \cong \operatorname{Br}(K)$.
- $H^{2}\left(K, \bar{K}[X]^{\times}\right) \cong \operatorname{Br}(K)$ since $\bar{K}[X]^{\times}=\bar{K}^{\times}$.
- $\operatorname{Br}(\bar{X}) \hookrightarrow \operatorname{Br}(\bar{K}(X))=0$ by Tsen's theorem.
- $\operatorname{Br}(K) \rightarrow \operatorname{Br}(X)$ and $H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)$ are injective since $X(K) \neq \emptyset$ gives retractions.
- $H^{1}(K, \operatorname{Pic}(\bar{X}))=0$ since $\operatorname{Pic}\left(\mathbb{A}_{K} \frac{1}{K}\right)=0$ and $\operatorname{deg}: \operatorname{Pic}\left(\mathbb{P}_{\bar{K}}\right) \xrightarrow{\sim} \mathbb{Z}$.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=\mathbb{A}_{K}^{1}$ or $X=\mathbb{P}_{K}^{1}$, then $\operatorname{Br}(X) \cong \operatorname{Br}(K)$.
- $H^{2}\left(K, \bar{K}[X]^{\times}\right) \cong \operatorname{Br}(K)$ since $\bar{K}[X]^{\times}=\bar{K}^{\times}$.
- $\operatorname{Br}(\bar{X}) \hookrightarrow \operatorname{Br}(\bar{K}(X))=0$ by Tsen's theorem.
- $\operatorname{Br}(K) \rightarrow \operatorname{Br}(X)$ and $H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\text {ett }}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)$ are injective since $X(K) \neq \emptyset$ gives retractions.
$\rightarrow H^{1}(K, \operatorname{Pic}(\bar{X}))=0$ since $\operatorname{Pic}\left(\mathbb{A} \frac{1}{K}\right)=0$ and deg $: \operatorname{Pic}\left(\mathbb{P}_{\bar{K}}^{1}\right) \xrightarrow{\sim} \mathbb{Z}$.
In fact, $\operatorname{Br}\left(\mathbb{A}_{K}^{n}\right) \cong \operatorname{Br}\left(\mathbb{P}_{K}^{n}\right) \cong \operatorname{Br}(K)$ by induction.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=E$ is an elliptic curve, then there is a short exact sequence

$$
0 \rightarrow \operatorname{Br}(K) \rightarrow \operatorname{Br}(E) \rightarrow H^{1}(K, E) \rightarrow 0 .
$$

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G} K \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=E$ is an elliptic curve, then there is a short exact sequence

$$
0 \rightarrow \operatorname{Br}(K) \rightarrow \operatorname{Br}(E) \rightarrow H^{1}(K, E) \rightarrow 0 .
$$

As before, with $H^{1}(K, \operatorname{Pic}(\bar{E}))=H^{1}(K, \operatorname{Jac}(\bar{E}))=H^{1}(K, E)$.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G} K \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=E$ is an elliptic curve, then there is a short exact sequence

$$
0 \rightarrow \operatorname{Br}(K) \rightarrow \operatorname{Br}(E) \rightarrow H^{1}(K, E) \rightarrow 0
$$

As before, with $H^{1}(K, \operatorname{Pic}(\bar{E}))=H^{1}(K, \operatorname{Jac}(\bar{E}))=H^{1}(K, E)$.

- (Tho10) $\operatorname{Br}(\mathcal{E})\left[\ell^{\infty}\right]$ for an elliptic K 3 surface $\mathcal{E} / \mathbb{F}_{q}$ given by $t(t-1) y^{2}=x(x-1)(x-t)$.

The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

$$
0 \longrightarrow H^{1}\left(K, \bar{K}[X]^{\times}\right) \longrightarrow \operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(\bar{X})^{G_{K}} \longrightarrow H^{2}\left(K, \bar{K}[X]^{\times}\right)=
$$

$$
\Longleftrightarrow \operatorname{ker}(\operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})) \rightarrow H^{1}(K, \operatorname{Pic}(\bar{X})) \rightarrow \operatorname{ker}\left(H^{3}\left(K, \bar{K}[X]^{\times}\right) \rightarrow H_{\mathrm{et}}^{3}\left(X, \mathbb{G}_{\mathrm{m}}\right)\right)
$$

Examples

- If $X=E$ is an elliptic curve, then there is a short exact sequence

$$
0 \rightarrow \operatorname{Br}(K) \rightarrow \operatorname{Br}(E) \rightarrow H^{1}(K, E) \rightarrow 0 .
$$

As before, with $H^{1}(K, \operatorname{Pic}(\bar{E}))=H^{1}(K, \operatorname{Jac}(\bar{E}))=H^{1}(K, E)$.

- (Tho10) $\operatorname{Br}(\mathcal{E})\left[\ell^{\infty}\right]$ for an elliptic K 3 surface $\mathcal{E} / \mathbb{F}_{q}$ given by $t(t-1) y^{2}=x(x-1)(x-t)$. Uses the short exact sequence

$$
0 \rightarrow \mathrm{NS}(\mathcal{E}) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \rightarrow H_{\mathrm{et}}^{2}\left(\mathcal{E}, \mathbb{Z}_{\ell}(1)\right) \rightarrow T_{\ell} \operatorname{Br}(\mathcal{E}) \rightarrow 0
$$

obtained by applying ℓ-adic cohomology to the Kummer sequence.

The Brauer-Manin obstruction

Let X be a scheme over a global field K.

The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point $x_{v}: \operatorname{Spec}\left(K_{v}\right) \rightarrow X$ induces a map $x_{v}^{*}: \operatorname{Br}(X) \rightarrow \operatorname{Br}\left(K_{v}\right)$.

The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point $x_{v}: \operatorname{Spec}\left(K_{v}\right) \rightarrow X$ induces a map $x_{v}^{*}: \operatorname{Br}(X) \rightarrow \operatorname{Br}\left(K_{v}\right)$. The Brauer-Manin pairing is

$$
\begin{aligned}
\langle-,-\rangle_{\mathrm{Br}}: \operatorname{Br}(X) \times X\left(\mathbb{A}_{K}\right) & \longrightarrow \mathbb{Q} / \mathbb{Z} \\
\left(A,\left(x_{v}\right)_{v}\right) & \longmapsto \sum_{v \in V_{K}}^{\operatorname{inv}_{v}\left(x_{v}^{*}(A)\right) .} .
\end{aligned}
$$

The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point $x_{v}: \operatorname{Spec}\left(K_{v}\right) \rightarrow X$ induces a map $x_{v}^{*}: \operatorname{Br}(X) \rightarrow \operatorname{Br}\left(K_{v}\right)$. The Brauer-Manin pairing is

$$
\begin{aligned}
\langle-,-\rangle_{\mathrm{Br}}: \operatorname{Br}(X) \times X\left(\mathbb{A}_{K}\right) & \longrightarrow \mathbb{Q} / \mathbb{Z} \\
\left(A,\left(x_{v}\right)_{v}\right) & \longmapsto \sum_{v \in V_{K}}^{\operatorname{inv}_{v}\left(x_{v}^{*}(A)\right)} .
\end{aligned}
$$

The Brauer-Manin set for $A \in \operatorname{Br}(X)$ is

$$
X\left(\mathbb{A}_{K}\right)^{A}:=\left\{\left(x_{v}\right) \in X\left(\mathbb{A}_{K}\right):\left\langle A,\left(x_{v}\right)_{v}\right\rangle_{\mathrm{Br}}=0\right\} .
$$

The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point $x_{v}: \operatorname{Spec}\left(K_{v}\right) \rightarrow X$ induces a map $x_{v}^{*}: \operatorname{Br}(X) \rightarrow \operatorname{Br}\left(K_{v}\right)$. The Brauer-Manin pairing is

$$
\begin{aligned}
\langle-,-\rangle_{\mathrm{Br}}: \operatorname{Br}(X) \times X\left(\mathbb{A}_{K}\right) & \longrightarrow \mathbb{Q} / \mathbb{Z} \\
\left(A,\left(x_{v}\right)_{v}\right) & \longmapsto \sum_{v \in V_{K}}^{\operatorname{inv}_{v}\left(x_{v}^{*}(A)\right) .} .
\end{aligned}
$$

The Brauer-Manin set for $A \in \operatorname{Br}(X)$ is

$$
X\left(\mathbb{A}_{K}\right)^{A}:=\left\{\left(x_{v}\right) \in X\left(\mathbb{A}_{K}\right):\left\langle A,\left(x_{v}\right)_{v}\right\rangle_{\mathrm{Br}}=0\right\} .
$$

By global class field theory,

$$
\overline{X(K)} \hookrightarrow \bigcap_{A \in \operatorname{Br}(X)} X\left(\mathbb{A}_{K}\right)^{A} \subseteq X\left(\mathbb{A}_{K}\right)
$$

The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point $x_{v}: \operatorname{Spec}\left(K_{v}\right) \rightarrow X$ induces a map $x_{v}^{*}: \operatorname{Br}(X) \rightarrow \operatorname{Br}\left(K_{v}\right)$. The Brauer-Manin pairing is

$$
\begin{aligned}
\langle-,-\rangle_{\operatorname{Br}}: \operatorname{Br}(X) \times X\left(\mathbb{A}_{K}\right) & \longrightarrow \mathbb{Q} / \mathbb{Z} \\
\left(A,\left(x_{v}\right)_{v}\right) & \longmapsto \sum_{v \in V_{K}}^{\operatorname{inv}_{v}\left(x_{v}^{*}(A)\right) .} .
\end{aligned}
$$

The Brauer-Manin set for $A \in \operatorname{Br}(X)$ is

$$
X\left(\mathbb{A}_{K}\right)^{A}:=\left\{\left(x_{v}\right) \in X\left(\mathbb{A}_{K}\right):\left\langle A,\left(x_{v}\right)_{v}\right\rangle_{\mathrm{Br}}=0\right\} .
$$

By global class field theory,

$$
\overline{X(K)} \hookrightarrow \bigcap_{A \in \operatorname{Br}(X)} X\left(\mathbb{A}_{K}\right)^{A} \subseteq X\left(\mathbb{A}_{K}\right)
$$

If $X\left(\mathbb{A}_{K}\right)^{A} \neq \emptyset$ but $X\left(\mathbb{A}_{K}\right)=\emptyset$, then there is a Brauer-Manin obstruction to the Hasse principle for X due to $A \in \operatorname{Br}(X)$.

The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point $x_{v}: \operatorname{Spec}\left(K_{v}\right) \rightarrow X$ induces a map $x_{v}^{*}: \operatorname{Br}(X) \rightarrow \operatorname{Br}\left(K_{v}\right)$. The Brauer-Manin pairing is

$$
\begin{aligned}
\langle-,-\rangle_{\mathrm{Br}}: \operatorname{Br}(X) \times X\left(\mathbb{A}_{K}\right) & \longrightarrow \mathbb{Q} / \mathbb{Z} \\
\left(A,\left(x_{v}\right)_{v}\right) & \longmapsto \sum_{v \in v_{k}} \operatorname{inv}_{v}\left(x_{v}^{*}(A)\right) .
\end{aligned}
$$

Theorem (Wit15)
Let \mathcal{E} be an elliptic $K 3$ surface over \mathbb{Q} given by

$$
y^{2}=x\left(x-3(t-1)^{3}(3+t)\right)\left(x+3(t+1)^{3}(3-t)\right)
$$

There is a Brauer-Manin obstruction to the Hasse principle for \mathcal{E} due to $\left(x+3(t-1)^{3}(3+t), 6 t(t+1)\right)+\left(x-3(t+1)^{3}(3-t), 6 t(t-1)\right) \in \operatorname{Br}(\mathcal{E})$.

References

ASD73 Artin, Swinnerton-Dyer (1973) The Shafarevich-Tate conjecture for pencils of elliptic curves on K3 surfaces
CTS19 Colliot-Thélène, Skorobogatov (2019) The Brauer-Grothendieck group
Fis17 Fisher (2017) On some algebras associated to genus one curves
KT03 Kato, Trihan (2003) On the conjectures of Birch and Swinnerton-Dyer in characteristic p
LLR18 Liu, Lorenzini, Raynaud (2018) Corrigendum to Néron models, Lie algebras, and reduction of curves of genus one and the Brauer group of a surface
Mil68 Milne (1968) The Tate-Šafarevič group of a constant abelian variety
Mil70 Milne (1970) The Brauer group of a rational surface
Mil75 Milne (1975) On a conjecture by Artin and Tate
Tat66 Tate (1966) On the conjectures of Birch and Swinnerton-Dyer and a geometric analog
Tho10 Thorne (2010) On the Tate-Shafarevich groups of certain elliptic curves
Ulm12 Ulmer (2012) Curves and Jacobians over function fields
Wit15 Wittenberg (2015) Transcendental Brauer-Manin obstruction on a pencil of elliptic curves

