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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K.
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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let

Vi := {closed points of Spec(Ox)} U V°.
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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let
Vi := {closed points of Spec(Ox)} U V°.

The Tate-Shafarevich group is

II(E/K) = ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK
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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let
Vi := {closed points of Spec(Ox)} U V°.
The Tate-Shafarevich group is

II(E/K) = ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK

Note that there is a bijection
HY(K,E) = WC(E/K),

the Weil-Chatelet group of torsors for E/K.
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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let
Vi := {closed points of Spec(Ox)} U V°.
The Tate-Shafarevich group is

II(E/K) = ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK

Note that there is a bijection
HY(K,E) = WC(E/K),

the Weil-Chatelet group of torsors for E/K. Thus 0 # C € III(E/K) is
a K-twist of E that is everywhere locally soluble but globally insoluble.
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The Tate-Shafarevich group of a number field
Let E be an elliptic curve over a number field K. Let
Vi := {closed points of Spec(Ox)} U V°.
The Tate-Shafarevich group is
II(E/K) = ker (Hl(K, E)— [] Hl(Kv,E)>.
ve Vi
Note that there is a bijection
HY(K,E) = WC(E/K),

the Weil-Chatelet group of torsors for E/K. Thus 0 # C € III(E/K) is
a K-twist of E that is everywhere locally soluble but globally insoluble.

Example (Selmer)

The curve 3X3+4Y3 +573 =0isa Q-twist of E: X3+ Y3+60Z23=0
that is everywhere locally soluble but globally insoluble, so III(E/Q) # 0.
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The Tate-Shafarevich group of a number field

Let E be an elliptic curve over a number field K. Let
Vi := {closed points of Spec(Ox)} U V°.

The Tate-Shafarevich group is

II(E/K) = ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK

Conjecture (Tate-Shafarevich)
#II(E/K) is finite.
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The Tate-Shafarevich group of a number field
Let E be an elliptic curve over a number field K. Let
Vi := {closed points of Spec(Ox)} U V°.
The Tate-Shafarevich group is

II(E/K) = ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK

Conjecture (Tate-Shafarevich)
#II(E/K) is finite.
Conjecture (Birch-Swinnerton-Dyer)

Assuming TS holds,

i LE/Ks) _ R-#II(E/K) -7
S0 (s — 1)REK) T HE(K)?

tors
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The Tate-Shafarevich group of a function field
Let E be an elliptic curve over a function field K = F,(C). Let
Vi := {closed points of Spec(Ok)} U V,°.
The Tate-Shafarevich group is

II(E/K) := ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK

Conjecture (Tate-Shafarevich)
#II(E/K) is finite.
Conjecture (Birch-Swinnerton-Dyer)

Assuming TS holds,

i LE/Ks) _ R-#II(E/K) -7
S0 (s — 1)REK) T HE(K)?

tors

11/90



The Tate-Shafarevich group of a function field
Let E be an elliptic curve over a function field K = Fq(C). Let
Vi := {closed points of C}.
The Tate-Shafarevich group is

II(E/K) := ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK

Conjecture (Tate-Shafarevich)
#II(E/K) is finite.
Conjecture (Birch-Swinnerton-Dyer)

Assuming TS holds,

i LE/Ks) _ R-#II(E/K) -7
S0 (s — 1)REK) T HE(K)?

tors
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The Tate-Shafarevich group of a function field
Let E be an elliptic curve over a function field K = Fq(C). Let
Vi := {closed points of C}.
The Tate-Shafarevich group is

II(E/K) := ker (Hl(K, E)— [] Hl(Kv,E)>.

ve VK

Conjecture (Tate-Shafarevich)
#II(E/K) is finite.
Theorem (KTO03)
Assuming TS[¢>°] holds for some ¢,

im LE/Ks)  R-#UI(E/K) -7
] (s — 1)KE/K) — HE(K)?

tors
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The Tate-Shafarevich group of a function field

Let E be an elliptic curve over a function field K = F4(C).

Conjecture (Tate-Shafarevich)
#UI(E/K) is finite.

Theorem (Tat66)
TS holds if and only if TS[¢>°] holds for some ¢.

14 /90



The Tate-Shafarevich group of a function field

Let £ — C be an elliptic surface over F, with generic fibre E/K.

Conjecture (Tate-Shafarevich)
#III(E/K) is finite.

Theorem (Tat66)
TS holds if and only if TS[¢>°] holds for some .
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The Tate-Shafarevich group of a function field

Let £ — C be an elliptic surface over F, with generic fibre E/K.

Conjecture (Tate-Shafarevich)
#UI(E/K) is finite.

Theorem (Tat66)
TS holds if and only if TS[¢>°] holds for some ¢.

Theorems
(Mil68) TS holds if £ is constant.
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The Tate-Shafarevich group of a function field

Let £ — C be an elliptic surface over F, with generic fibre E/K.

Conjecture (Tate-Shafarevich)
#UI(E/K) is finite.

Theorem (Tat66)
TS holds if and only if TS[¢>°] holds for some ¢.

Theorems
(Mil68) TS holds if £ is constant.
(Mil70) TS holds if £ is rational.
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The Tate-Shafarevich group of a function field

Let £ — C be an elliptic surface over F, with generic fibre E/K.

Conjecture (Tate-Shafarevich)

#UI(E/K) is finite.

Theorem (Tat66)

TS holds if and only if TS[¢>°] holds for some ¢.

Theorems

(Mil68) TS holds if £ is constant.

(Mil70) TS holds if £ is rational.
(ASD73) TS holds if £ is K3.
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The Tate-Shafarevich group of a function field

Let £ — C be an elliptic surface over F, with generic fibre E/K.

Conjecture (Tate-Shafarevich)

#UI(E/K) is finite.

Theorem (Tat66)

TS holds if and only if TS[¢>°] holds for some ¢.

Theorems

(Mil68) TS holds if £ is constant.

(Mil70) TS holds if £ is rational.
(ASD73) TS holds if £ is K3.

Theorem (Ulm12, Proposition 5.3.1)
Br(€) = LI(E/K).
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The Artin-Tate conjecture

Let £ — C be an elliptic surface over F, with generic fibre E/K.
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The Artin-Tate conjecture
Let £ — C be an elliptic surface over F, with generic fibre E/K. Then

KTO03
<~

BSD holds for E #III(E/K)[€°>] is finite for some ¢
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The Artin-Tate conjecture

Let £ — C be an elliptic surface over F, with generic fibre E/K. Then

BSD holds for E % #III(E/K)[€°>] is finite for some ¢
o #Br(€)[¢>°] is finite for some £
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The Artin-Tate conjecture

Let £ — C be an elliptic surface over F, with generic fibre E/K. Then

BSD holds for E % #III(E/K)[€°>] is finite for some ¢
o #Br(€)[¢>°] is finite for some £
Mil75

= AT (and T) holds for £.
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The Artin-Tate conjecture

Let £ — C be an elliptic surface over F, with generic fibre E/K. Then

BSD holds for E % #III(E/K)[€°>] is finite for some ¢
o #Br(€)[¢>°] is finite for some £
b AT (and T) holds for £.

Conjecture (Artin-Tate)
Let X be a smooth projective geometrically-connected surface over IF.
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The Artin-Tate conjecture

Let £ — C be an elliptic surface over F, with generic fibre E/K. Then

BSD holds for E % #III(E/K)[€°>] is finite for some ¢
o #Br(€)[¢>°] is finite for some £
b AT (and T) holds for £.

Conjecture (Artin-Tate)

Let X be a smooth projective geometrically-connected surface over IF.
Then #Br(X) is finite,
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The Artin-Tate conjecture

Let £ — C be an elliptic surface over F, with generic fibre E/K. Then

BSD holds for E % #III(E/K)[€°>] is finite for some ¢
o #Br(€)[¢>°] is finite for some £
b AT (and T) holds for £.

Conjecture (Artin-Tate)

Let X be a smooth projective geometrically-connected surface over IF.
Then #Br(X) is finite, and if NS(X) jtors = (D), then

i P(Xea™) #Br(X) - [ det((Di, Dj)i))|
s—1 (1 _ qlfs)rk(NS(X)) #NS(X)2 _ qx(X,Ox)71+dim(PicVar(X)) ’

to
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The Artin-Tate conjecture

Let £ — C be an elliptic surface over F, with generic fibre E/K. Then

BSD holds for £ % #ITI(E/K)[¢>] is finite for some £
o #Br(€)[¢>°] is finite for some £
b AT (and T) holds for £.

Conjecture (Artin-Tate)

Let X be a smooth projective geometrically-connected surface over IF.
Then #Br(X) is finite, and if NS(X) jtors = (D), then

i P(Xea™) #Br(X) - [ det((Di, Dj)i))|
s—1 (1 _ qlfs)rk(NS(X)) #NS(X)2 _ qx(X,Ox)71+dim(PicVar(X)) ’

to

Note that if X — C is flat proper with smooth geometrically-connected
generic fibre Xk /K, then #III(Jac(Xk)/K) ~ #Br(X) (LLR18).
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Overview
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .

A central simple algebra over K is a finite-dimensional associative
K-algebra with centre K and no non-trivial proper two-sided ideals.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .

A central simple algebra over K is a finite-dimensional associative
K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

> Algebra of n x n matrices Mat,(K) over K.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .

A central simple algebra over K is a finite-dimensional associative
K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

> Algebra of n x n matrices Mat,(K) over K.
> Algebra of nx n matrices Mat,(D) over a central division algebra D.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .

A central simple algebra over K is a finite-dimensional associative
K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

> Algebra of n x n matrices Mat,(K) over K.
> Algebra of nx n matrices Mat,(D) over a central division algebra D.
» Tensor product A®y B of two CSAs A and B.
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The Brauer-Azumaya group of a field
Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .
A central simple algebra over K is a finite-dimensional associative
K-algebra with centre K and no non-trivial proper two-sided ideals.
Examples

> Algebra of n x n matrices Mat,(K) over K.

> Algebra of nx n matrices Mat,(D) over a central division algebra D.
» Tensor product A®y B of two CSAs A and B.

» Opposite algebra A°? of a CSA A.
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The Brauer-Azumaya group of a field
Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .
A central simple algebra over K is a finite-dimensional associative
K-algebra with centre K and no non-trivial proper two-sided ideals.
Examples
> Algebra of n x n matrices Mat,(K) over K.
> Algebra of nx n matrices Mat,(D) over a central division algebra D.
» Tensor product A®y B of two CSAs A and B.
» Opposite algebra A°? of a CSA A.

Two CSAs A and B over K are equivalent if there are n, m € N such
that A®k Mat,(K) = B @« Mat,(K).
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .

A central simple algebra over K is a finite-dimensional associative
K-algebra with centre K and no non-trivial proper two-sided ideals.

Examples

> Algebra of n x n matrices Mat,(K) over K.
> Algebra of nx n matrices Mat,(D) over a central division algebra D.
» Tensor product A®y B of two CSAs A and B.
» Opposite algebra A°? of a CSA A.
Two CSAs A and B over K are equivalent if there are n,m € N such
that A®k Mat,(K) = B @« Mat,(K).
Example
If n,m e N and D is a CDA, then Mat,(D) ~ Mat,(D).
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples
> Br(F,) = 0.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples
» Br(F,) = 0. Suffices to prove a CDA D over F, is Fy,.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples

» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples

» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K. A field K with centre F is Fy,.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .

Examples

» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K. A field K with centre F is Fy,.

> Br(C) =0.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is
Br(K) := {central simple algebras over K}/ ~ .

Examples

» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K. A field K with centre F is Fy,.

» Br(C) = 0. Suffices to prove a CDA D over C is C.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples

» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K. A field K with centre F is Fy,.

» Br(C) = 0. Suffices to prove a CDA D over Cis C. If x € D, then
C[x] is an integral domain and a finite-dimensional C-vector space.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples
» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K. A field K with centre F is Fy,.

» Br(C) = 0. Suffices to prove a CDA D over Cis C. If x € D, then
C[x] is an integral domain and a finite-dimensional C-vector space.
Thus C[x] is a field, but C does not have finite extensions.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples
» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K. A field K with centre F is Fy,.

» Br(C) = 0. Suffices to prove a CDA D over Cis C. If x € D, then
C[x] is an integral domain and a finite-dimensional C-vector space.
Thus C[x] is a field, but C does not have finite extensions.

> Br(C(X)) =0 for a curve X/C.
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The Brauer-Azumaya group of a field

Let K be a field. The classical Brauer group of K is

Br(K) := {central simple algebras over K}/ ~ .

Examples
» Br(F,) = 0. Suffices to prove a CDA D over F, is F,. A finite
division algebra D is a field K. A field K with centre F is Fy,.

» Br(C) = 0. Suffices to prove a CDA D over Cis C. If x € D, then
C[x] is an integral domain and a finite-dimensional C-vector space.
Thus C[x] is a field, but C does not have finite extensions.

» Br(C(X)) =0 for a curve X/C. This is Tsen's theorem.
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br'(K) = H*(K,G,).
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br'(K) = H*(K,G,).

Theorem (CTS19, Theorem 1.3.5)
Br(K) = Br'(K).
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is
Br'(K) = H*(K,G,).

Theorem (CTS19, Theorem 1.3.5)

Br(K) = Br'(K).

Examples

> Br'(R) = 1z/Z.
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br'(K) = H*(K,G,).

Theorem (CTS19, Theorem 1.3.5)
Br(K) = Br'(K).

Examples

> Br'(R) = 1Z/Z. By cohomology of cyclic groups,

Br'(R) = H*(Gal(C/R),C*) = R* /Nm¢,g(C*) = {£}.
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is
Br'(K) = H*(K,G,).

Theorem (CTS19, Theorem 1.3.5)

Br(K) = Br'(K).

Examples

> Br'(R) = 1Z/Z. By cohomology of cyclic groups,
Br'(R) = H*(Gal(C/R),C*) = R* /Nm¢,g(C*) = {£}.

In fact, Br'(R) = {R, H}.
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is
Br'(K) = H*(K,G,).

Theorem (CTS19, Theorem 1.3.5)

Br(K) = Br'(K).

Examples

> Br'(R) = 1Z/Z. By cohomology of cyclic groups,
Br'(R) = H?(Gal(C/R), C*) & R* /Nmg,(C*) = {£}.

In fact, Br'(R) = {R, H}.
» Local class field theory gives isomorphisms

inv, : Br'(Q,) = Q/Z, inv, : Br'(F,((T))) = Q/Z.
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br'(K) = H*(K,G,).

Theorem (CTS19, Theorem 1.3.5)
Br(K) = Br'(K).
Examples

» Global class field theory gives short exact sequences

inv,

H'(L/K, C.) = Br'(Q) - €D B'(Q) M 07,0,

veVp

0=
L

§i3
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The Brauer-Grothendieck group of a field

Let K be a field. The cohomological Brauer group of K is

Br'(K) = H*(K,G,).

Theorem (CTS19, Theorem 1.3.5)
Br(K) = Br'(K).
Examples

» Global class field theory gives short exact sequences

inv,

H'(L/K, C.) = Br'(Q) - €D B'(Q) M 07,0,

veVp

0=
L

§l3

0 = H'(Fy, Jac(Gy)) = Br'(K) — @) Br'(K,) =22 Q/Z - 0,
ve Vi

where K =TF,(C).
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is

Bra,(X) := {Azumaya algebras on X}/ ~ .
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is
Bra,(X) := {Azumaya algebras on X}/ ~ .

An Azumaya algebra A on X is a locally free Ox-algebra of finite type
such that A, ROy, Kx IS a CSA over ky for all closed points x € X.
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is
Bra,(X) := {Azumaya algebras on X}/ ~ .

An Azumaya algebra A on X is a locally free Ox-algebra of finite type
such that A, ROy, Kx IS a CSA over ky for all closed points x € X.
Examples

» Trivial, tensor product, opposite algebra sheaves of AAs.
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is
Bra,(X) := {Azumaya algebras on X}/ ~ .

An Azumaya algebra A on X is a locally free Ox-algebra of finite type
such that A, ROy, Kx IS a CSA over ky for all closed points x € X.
Examples

» Trivial, tensor product, opposite algebra sheaves of AAs.
» (X = Spec(K)) For a CSA A over K, the constant sheaf A.
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is
Bra,(X) := {Azumaya algebras on X}/ ~ .

An Azumaya algebra A on X is a locally free Ox-algebra of finite type
such that A, ROy, Kx IS a CSA over ky for all closed points x € X.
Examples

» Trivial, tensor product, opposite algebra sheaves of AAs.
» (X = Spec(K)) For a CSA A over K, the constant sheaf A.

> (X =P%) For a CSA A over K, the sheaf A @k Endk(ED,, Ox(n:)).

59 /90



The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is
Bra,(X) := {Azumaya algebras on X}/ ~ .

An Azumaya algebra A on X is a locally free Ox-algebra of finite type
such that A, ROy, Kx IS a CSA over ky for all closed points x € X.
Examples

» Trivial, tensor product, opposite algebra sheaves of AAs.
» (X = Spec(K)) For a CSA A over K, the constant sheaf A.
> (X =P%) For a CSA A over K, the sheaf A @k Endk(ED,, Ox(n:)).

Two AAs A and B are equivalent if there are locally free Ox-modules A
and B of finite rank such that A ®o, Endo, (A) = B ®o, Endo,(B).
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is
Bra,(X) := {Azumaya algebras on X}/ ~ .

An Azumaya algebra A on X is a locally free Ox-algebra of finite type
such that A, ROy, Kx IS a CSA over ky for all closed points x € X.
Examples

» Trivial, tensor product, opposite algebra sheaves of AAs.

» (X = Spec(K)) For a CSA A over K, the constant sheaf A.

> (X =P%) For a CSA A over K, the sheaf A @k Endk(ED,, Ox(n:)).

Two AAs A and B are equivalent if there are locally free Ox-modules A
and B of finite rank such that A ®o, Endo, (A) = B ®o, Endo,(B).

Examples
» Bra,(Spec(K)) = Br(K).
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The Brauer-Azumaya group of a scheme

Let X be a scheme. The Brauer-Azumaya group of X is
Bra,(X) := {Azumaya algebras on X}/ ~ .
An Azumaya algebra A on X is a locally free Ox-algebra of finite type
such that A, ROy, Kx IS a CSA over ky for all closed points x € X.
Examples
» Trivial, tensor product, opposite algebra sheaves of AAs.

» (X = Spec(K)) For a CSA A over K, the constant sheaf A.
> (X =P%) For a CSA A over K, the sheaf A @k Endk(ED,, Ox(n:)).

Two AAs A and B are equivalent if there are locally free Ox-modules A
and B of finite rank such that A ®o, Endo, (A) = B ®o, Endo,(B).
Examples

» Bra,(Spec(K)) = Br(K).

» (Fisl7) Bra,(C) for an smooth curve of genus one C/K.
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is

Bra:(X) := Ha(X,Gy).

63/90



The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).

Unlike for fields, in general Bra,(X) < Brg,(X) is not surjective.
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).
Unlike for fields, in general Bra,(X) < Brg,(X) is not surjective.

Theorem (CTS19, Theorem 3.3.2)

Assume X is quasi-compact separated with an ample line bundle. Then

BI‘(X) = BI‘AZ(X) = BrGr(X)tors-
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).

Unlike for fields, in general Bra,(X) < Brg,(X) is not surjective.

Theorem (CTS19, Theorem 3.3.2)

Assume X is quasi-compact separated with an ample line bundle. Then
Br(X) := Bra,(X) = Bra:(X)tors-

Example

A quasi-projective scheme over an affine scheme, such as E/Fq(C) or
E/F,.
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).

Unlike for fields, in general Bra,(X) < Brg,(X) is not surjective.

Theorem (CTS19, Theorem 3.3.2)

Assume X is quasi-compact separated with an ample line bundle. Then
Br(X) := Bra,(X) = Bra:(X)tors-

Example
A quasi-projective scheme over an affine scheme, such as E/Fq(C) or
E/Fq. If X is regular integral noetherian, then Brg,(X) is already torsion.
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The Brauer-Grothendieck group of a scheme
Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).

Unlike for fields, in general Bra,(X) < Brg,(X) is not surjective.

Theorem (CTS19, Theorem 3.3.2)

Assume X is quasi-compact separated with an ample line bundle. Then
Br(X) := Bra,(X) = Bra:(X)tors-

Example

A quasi-projective scheme over an affine scheme, such as E/Fq(C) or
E/Fq. If X is regular integral noetherian, then Brg,(X) is already torsion.

Theorem (CTS19, Theorem 3.5.4)
Assume X is regular integral over a field K. Then Br(X) < Br(K(X)).
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).

Assume X is a variety over a perfect field K, and write X 1= X xx K.
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).

Assume X is a variety over a perfect field K, and write X 1= X xx K.

The main tool for computation is the Leray spectral sequence

EP? = HP(K,HL(X,Gw)) = HETI(X,Gp).
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The Brauer-Grothendieck group of a scheme

Let X be a scheme. The Brauer-Grothendieck group of X is
Bra:(X) := Ha(X,Gy).

Assume X is a variety over a perfect field K, and write X 1= X xx K.

The main tool for computation is the Leray spectral sequence

EP? = HP(K,HL(X,Gw)) = HETI(X,Gp).

Theorem (CTS19, 4.8)

The first seven terms form an exact sequence

0 — HY(K, K[X]*) ——— Pic(X) —— Pic(X)% —— H2(K, K[X]*

er(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H*(K, K[X]X) — H%(X,Gm))
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + H*(K, Pic(X)) + ker(H*(K, K[X]*) — H3(X,Gm))
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + H*(K, Pic(X)) + ker(H*(K, K[X]*) — H3(X,Gm))

Examples
> If X = A} or X = P}, then Br(X) = Br(K).
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples
> If X = A} or X = P}, then Br(X) = Br(K).
> H(K,K[X]*) = Br(K) since K[X]* =K.
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples
> If X = A} or X = P}, then Br(X) = Br(K).

> H?(K,K[X]*) = Br(K) since K[X]* = K-
> Br(X) < Br(K(X)) =0 by Tsen's theorem.
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The Brauer-Grothendieck group of a scheme
Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples
> If X = A} or X = P}, then Br(X) = Br(K).

> H(K,K[X]*) = Br(K) since K[X]* =K.

> Br(X) < Br(K(X)) =0 by Tsen's theorem.

> Br(K) — Br(X) and H3(K, K[X]*) — H3.(X,Gwm) are injective
since X(K) # 0 gives retractions.
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples
> If X = A} or X = P}, then Br(X) = Br(K).

> H(K,K[X]*) = Br(K) since K[X]* =K.

> Br(X) < Br(K(X)) =0 by Tsen's theorem.

> Br(K) — Br(X) and H3(K, K[X]*) — H3.(X,Gwm) are injective
since X(K) # 0 gives retractions.

> H'(K,Pic(X)) = 0 since Pic(AIK) =0 and deg : Pic(Py) — Z.
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples
> If X = A} or X = P}, then Br(X) = Br(K).

> H(K,K[X]*) = Br(K) since K[X]* =K.

> Br(X) < Br(K(X)) =0 by Tsen's theorem.

> Br(K) — Br(X) and H3(K, K[X]*) — H3.(X,Gwm) are injective
since X(K) # 0 gives retractions.

> H'(K,Pic(X)) = 0 since Pic(AIK) =0 and deg : Pic(Py) — Z.

In fact, Br(A)) = Br(P}) = Br(K) by induction.
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples

> If X = E is an elliptic curve, then there is a short exact sequence

0 — Br(K) — Br(E) — HYK,E) — 0.
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples

> If X = E is an elliptic curve, then there is a short exact sequence
0 — Br(K) — Br(E) — HYK,E) — 0.

As before, with H'(K, Pic(E)) = H'(K, Jac(E)) = H'(K, E).
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples

> If X = E is an elliptic curve, then there is a short exact sequence
0 — Br(K) — Br(E) — HYK,E) — 0.

As before, with H'(K, Pic(E)) = H}(K, Jac(E)) = H'(K, E).
» (Thol0) Br(&)[¢>] for an elliptic K3 surface £/F given by
t(t —1)y? = x(x — 1)(x — t).
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The Brauer-Grothendieck group of a scheme

Let X be a variety over a perfect field K. There is an exact sequence

0 — HYK,K[X]*) —— Pic(X) ——— Pic(X)°k —— H*(K, K[X]*

ker(Br(X) — Br(X)) + HY(K, Pic(X)) + ker(H3(K, K[X]*) — H3(X,Gm))

Examples
> If X = E is an elliptic curve, then there is a short exact sequence
0 — Br(K) — Br(E) — HYK,E) — 0.

As before, with H!(K, Pic(E)) = H*(K, Jac(E)) = H (K, E).
» (Thol0) Br(&)[¢>] for an elliptic K3 surface £/F given by
t(t — 1)y? = x(x — 1)(x — t). Uses the short exact sequence

0 — NS(€) ®z Z¢ — HZ(E,Z4(1)) — T¢Br(E) — 0,

obtained by applying ¢-adic cohomology to the Kummer sequence.
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The Brauer-Manin obstruction

Let X be a scheme over a global field K.
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The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point x, : Spec(K,) — X
induces a map x; : Br(X) — Br(K,).
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The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point x, : Spec(K,) — X
induces a map x; : Br(X) — Br(K,). The Brauer-Manin pairing is
(— —)Br @ Br(X)xX(Ax) — Q/Z
Al Y i g(A) -

ve Vi
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The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point x, : Spec(K,) — X
induces a map x; : Br(X) — Br(K,). The Brauer-Manin pairing is

(=, =) ¢ Br(X)x X(Ax) — Q/Z
(A C0)) = D mv(x(A) -

ve Vi

The Brauer-Manin set for A € Br(X) is

X(AKk)* = {() € X(Ak) : (A, (%)) = 0},
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The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point x, : Spec(K,) — X
induces a map x; : Br(X) — Br(K,). The Brauer-Manin pairing is

(=, =) ¢ Br(X)x X(Ax) — Q/Z
(A C0)) = D mv(x(A) -

ve Vi
The Brauer-Manin set for A € Br(X) is
X(Ak)" = {(x) € X(Ak) : (A (x)v)Br = 0}

By global class field theory,

X(K) = () X(Ax)* < X(Ax).
A€eBr(X)
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The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point x, : Spec(K,) — X
induces a map x; : Br(X) — Br(K,). The Brauer-Manin pairing is

(=, =) ¢ Br(X)x X(Ax) — Q/Z
(A C0)) = D mv(x(A) -

ve Vi
The Brauer-Manin set for A € Br(X) is
X(Ak)" = {(x) € X(Ak) : (A (x)v)Br = 0}

By global class field theory,

X(K)= ] X(Ax)* < X(Ak).
A€eBr(X)

If X(Ak)* # 0 but X(Ak) = 0, then there is a Brauer-Manin
obstruction to the Hasse principle for X due to A € Br(X).
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The Brauer-Manin obstruction

Let X be a scheme over a global field K. A point x, : Spec(K,) — X
induces a map x; : Br(X) — Br(K,). The Brauer-Manin pairing is

(=, =) ¢ Br(X)x X(Ax) — Q/Z
(A C0)) = D mv(x(A) -

ve Vi

Theorem (Wit15)
Let £ be an elliptic K3 surface over Q given by
y2=x(x =3(t = 1)3B+t))(x +3(t + 1)3(3 — t)).
There is a Brauer-Manin obstruction to the Hasse principle for £ due to

(x+3(t—1)3(3+1t),6t(t+1))+ (x—3(t+1)3(3—t),6t(t — 1)) € Br(&).
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